Articles liés à Machine Learning Assisted Evolutionary Multi and Many...

Machine Learning Assisted Evolutionary Multi and Many Objective Optimization - Couverture rigide

 
9789819920952: Machine Learning Assisted Evolutionary Multi and Many Objective Optimization

Synopsis

This book focuses on machine learning (ML) assisted evolutionary multi- and many-objective optimization (EMâO). EMâO algorithms, namely EMâOAs, iteratively evolve a set of solutions towards a good Pareto Front approximation. The availability of multiple solution sets over successive generations makes EMâOAs amenable to application of ML for different pursuits.
Recognizing the immense potential for ML-based enhancements in the EMâO domain, this book intends to serve as an exclusive resource for both domain novices and the experienced researchers and practitioners. To achieve this goal, the book first covers the foundations of optimization, including problem and algorithm types. Then, well-structured chapters present some of the key studies on ML-based enhancements in the EMâO domain, systematically addressing important aspects. These include learning to understand the problem structure, converge better, diversify better, simultaneously converge and diversify better, and analyze the Pareto Front. In doing so, this book broadly summarizes the literature, beginning with foundational work on innovization (2003) and objective reduction (2006), and extending to the most recently proposed innovized progress operators (2021-23). It also highlights the utility of ML interventions in the search, post-optimality, and decision-making phases pertaining to the use of EMâOAs. Finally, this book shares insightful perspectives on the future potential for ML based enhancements in the EMâOA domain.

To aid readers, the book includes working codes for the developed algorithms. This book will not only strengthen this emergent theme but also encourage ML researchers to develop more efficient and scalable methods that cater to the requirements of the EMâOA domain. It serves as an inspiration for further research and applications at the synergistic intersection of EMâOA and ML domains.


Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Dhish Kumar Saxena received the bachelor's degree in mechanical engineering (1997), the master's degree in solid mechanics and design (1999), and the Ph.D. degree in evolutionary many-objective optimization (2008) from the Indian Institute of Technology Kanpur, India. Currently, he is a Professor at the Department of Mechanical and Industrial Engineering, and a joint faculty at the Mehta Family of Data Science and Artificial Intelligence, Indian Institute of Technology (IIT) Roorkee, India. Prior to joining IIT Roorkee, he worked with the Cranfield University and Bath University, U.K., from 2008 to 2012. At a fundamental level, his research has focused on Multi- and Many-objective optimization, including, development of Evolutionary Algorithms and their performance enhancement using Machine Learning; Termination criterion for these algorithms; and Decision Support based on objectives and constraints' relative preferences. At an applied level, his focus has been on demonstrating the utility of Evolutionary and Mathematical Optimization on a range of real-world problems, including scheduling, engineering design, business-process, and multi-criterion decision making. He is also an Associate Editor for Elsevier's Swarm and Evolutionary Computation journal.

Sukrit Mittal is a Senior Research Scientist in the AI & Optimization Research team at Franklin Templeton Investments. He obtained his B.Tech. (2012-16) and Ph.D. (2018-22) degrees from IIT Roorkee, India. He also worked with Mahindra Research Valley as a design engineer (2016-18). His research has primarily focused on evolutionary multi- and many-objective optimization, machine learning assisted optimization, and innovization.

Kalyanmoy Deb is University Distinguished Professor and Koenig Endowed Chair Professor at Department of Electrical and Computer Engineering in Michigan State University, USA. His research interests are in evolutionary optimization and their application inmulti-criterion optimization, modeling, and machine learning. He was awarded IEEE Evolutionary Computation Pioneer Award for his sustained work in EMO, Infosys Prize, TWAS Prize in Engineering Sciences, CajAstur Mamdani Prize, Edgeworth-Pareto award, Bhatnagar Prize in Engineering Sciences, and Bessel Research award from Germany. He is fellow of IEEE and ASME.

Erik D. Goodman was PI and Director of BEACON Center for the Study of Evolution in Action, an NSF Center headquartered at Michigan State University, 2010-2018. He was Professor of Electrical & Computer Engineering, also Mechanical Engineering and Computer Science & Engineering, until retiring in 2022. He co-founded Red Cedar Technology (1999, now part of Siemens), and developed the HEEDS SHERPA commercial design optimization software. Honors include Michigan Distinguished Professor of the Year, 2009; MSU Distinguished Faculty Award, 2011; Senior Fellow, International Society for Genetic and Evolutionary Computation, 2004; Founding Chair, ACM SIG on Genetic and Evolutionary Computation (SIGEVO), 2005-2007.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

  • ÉditeurSpringer Verlag, Singapore
  • Date d'édition2024
  • ISBN 10 9819920957
  • ISBN 13 9789819920952
  • ReliureRelié
  • Langueanglais
  • Nombre de pages244
  • Coordonnées du fabricantnon disponible

Acheter D'occasion

état :  Comme neuf
Unread book in perfect condition...
Afficher cet article
EUR 199,42

Autre devise

EUR 17,21 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 144,94

Autre devise

EUR 9,70 expédition depuis Allemagne vers France

Destinations, frais et délais

Résultats de recherche pour Machine Learning Assisted Evolutionary Multi and Many...

Image fournie par le vendeur

Saxena, Dhish Kumar|Mittal, Sukrit|Deb, Kalyanmoy|Goodman, Erik D.
ISBN 10 : 9819920957 ISBN 13 : 9789819920952
Neuf Couverture rigide

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 838236801

Contacter le vendeur

Acheter neuf

EUR 144,94
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Dhish Kumar Saxena
Edité par Apress Mrz 2024, 2024
ISBN 10 : 9819920957 ISBN 13 : 9789819920952
Neuf Couverture rigide
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book focuses on machine learning (ML) assisted evolutionary multi- and many-objective optimization (EMâO). EMâO algorithms, namely EMâOAs, iteratively evolve a set of solutions towards a good Pareto Front approximation. The availability of multiple solution sets over successive generations makes EMâOAs amenable to application of ML for different pursuits.Recognizing the immense potential for ML-based enhancements in the EMâO domain, this book intends to serve as an exclusive resource for both domain novices and the experienced researchers and practitioners.To achieve this goal, the book first covers the foundations of optimization, including problem and algorithm types.Then, well-structured chapters present some of the key studies on ML-based enhancements in the EMâO domain, systematically addressing important aspects. These include learning to understand the problem structure, converge better, diversify better, simultaneously converge and diversify better, and analyze the Pareto Front. In doing so, this book broadly summarizes the literature, beginning with foundational work on innovization (2003) and objective reduction (2006), and extending to the most recently proposed innovized progress operators (2021-23). It also highlights the utility of ML interventions in the search, post-optimality, and decision-making phases pertaining to the use of EMâOAs. Finally, this book shares insightful perspectives on the future potential for ML based enhancements in the EMâOA domain.To aid readers, the book includes working codes for the developed algorithms. This book will not only strengthen this emergent theme but also encourage ML researchers to develop more efficient and scalable methods that cater to the requirements of the EMâOA domain. It serves as an inspiration for further research and applications at the synergistic intersection of EMâOA and ML domains. 244 pp. Englisch. N° de réf. du vendeur 9789819920952

Contacter le vendeur

Acheter neuf

EUR 171,19
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Saxena, Dhish Kumar; Mittal, Sukrit; Deb, Kalyanmoy; Goodman, Erik D.
Edité par Springer, 2024
ISBN 10 : 9819920957 ISBN 13 : 9789819920952
Neuf Couverture rigide

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9789819920952_new

Contacter le vendeur

Acheter neuf

EUR 180,69
Autre devise
Frais de port : EUR 4,68
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Dhish Kumar Saxena
ISBN 10 : 9819920957 ISBN 13 : 9789819920952
Neuf Couverture rigide

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Neuware -This book focuses on machine learning (ML) assisted evolutionary multi- and many-objective optimization (EMâO). EMâO algorithms, namely EMâOAs, iteratively evolve a set of solutions towards a good Pareto Front approximation. The availability of multiple solution sets over successive generations makes EMâOAs amenable to application of ML for different pursuits.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 260 pp. Englisch. N° de réf. du vendeur 9789819920952

Contacter le vendeur

Acheter neuf

EUR 171,19
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Dhish Kumar Saxena
ISBN 10 : 9819920957 ISBN 13 : 9789819920952
Neuf Couverture rigide

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book focuses on machine learning (ML) assisted evolutionary multi- and many-objective optimization (EMâO). EMâO algorithms, namely EMâOAs, iteratively evolve a set of solutions towards a good Pareto Front approximation. The availability of multiple solution sets over successive generations makes EMâOAs amenable to application of ML for different pursuits.Recognizing the immense potential for ML-based enhancements in the EMâO domain, this book intends to serve as an exclusive resource for both domain novices and the experienced researchers and practitioners.To achieve this goal, the book first covers the foundations of optimization, including problem and algorithm types.Then, well-structured chapters present some of the key studies on ML-based enhancements in the EMâO domain, systematically addressing important aspects. These include learning to understand the problem structure, converge better, diversify better, simultaneously converge and diversify better, and analyze the Pareto Front. In doing so, this book broadly summarizes the literature, beginning with foundational work on innovization (2003) and objective reduction (2006), and extending to the most recently proposed innovized progress operators (2021-23). It also highlights the utility of ML interventions in the search, post-optimality, and decision-making phases pertaining to the use of EMâOAs. Finally, this book shares insightful perspectives on the future potential for ML based enhancements in the EMâOA domain.To aid readers, the book includes working codes for the developed algorithms. This book will not only strengthen this emergent theme but also encourage ML researchers to develop more efficient and scalable methods that cater to the requirements of the EMâOA domain. It serves as an inspiration for further research and applications at the synergistic intersection of EMâOA and ML domains. N° de réf. du vendeur 9789819920952

Contacter le vendeur

Acheter neuf

EUR 179,61
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Saxena, Dhish Kumar; Mittal, Sukrit; Deb, Kalyanmoy; Goodman, Erik D.
Edité par Springer, 2024
ISBN 10 : 9819920957 ISBN 13 : 9789819920952
Neuf Couverture rigide

Vendeur : California Books, Miami, FL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur I-9789819920952

Contacter le vendeur

Acheter neuf

EUR 188,93
Autre devise
Frais de port : EUR 6,89
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Saxena, Dhish Kumar; Mittal, Sukrit; Deb, Kalyanmoy; Goodman, Erik D.
Edité par Springer, 2024
ISBN 10 : 9819920957 ISBN 13 : 9789819920952
Neuf Couverture rigide

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 47435957-n

Contacter le vendeur

Acheter neuf

EUR 180,21
Autre devise
Frais de port : EUR 17,59
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Saxena, Dhish Kumar; Mittal, Sukrit; Deb, Kalyanmoy; Goodman, Erik D.
Edité par Springer, 2024
ISBN 10 : 9819920957 ISBN 13 : 9789819920952
Neuf Couverture rigide

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 47435957-n

Contacter le vendeur

Acheter neuf

EUR 186,58
Autre devise
Frais de port : EUR 17,21
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Saxena, Dhish Kumar; Mittal, Sukrit; Deb, Kalyanmoy; Goodman, Erik D.
Edité par Springer, 2024
ISBN 10 : 9819920957 ISBN 13 : 9789819920952
Ancien ou d'occasion Couverture rigide

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 47435957

Contacter le vendeur

Acheter D'occasion

EUR 199,42
Autre devise
Frais de port : EUR 17,21
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Saxena, Dhish Kumar; Mittal, Sukrit; Deb, Kalyanmoy; Goodman, Erik D.
Edité par Springer, 2024
ISBN 10 : 9819920957 ISBN 13 : 9789819920952
Ancien ou d'occasion Couverture rigide

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 47435957

Contacter le vendeur

Acheter D'occasion

EUR 200,11
Autre devise
Frais de port : EUR 17,59
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

There are 6 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre