This book investigates in detail long-term health state estimation technology of energy storage systems, assessing its potential use to replace common filtering methods that constructs by equivalent circuit model with a data-driven method combined with electrochemical modeling, which can reflect the battery internal characteristics, the battery degradation modes, and the battery pack health state. Studies on long-term health state estimation have attracted engineers and scientists from various disciplines, such as electrical engineering, materials, automation, energy, and chemical engineering. Pursuing a holistic approach, the book establishes a fundamental framework for this topic, while emphasizing the importance of extraction for health indicators and the significant influence of electrochemical modeling and data-driven issues in the design and optimization of health state estimation in energy storage systems. The book is intended for undergraduate and graduate students who are interested in new energy measurement and control technology, researchers investigating energy storage systems, and structure/circuit design engineers working on energy storage cell and pack.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Qi Huang is the president of Southwest University of Science and Technology, China. He is an IEEE fellow (Conference Secretary General). He is an authoritative expert in the field of power systems and energy internet research. He is the head of NELab. He has published 2 Wiley-IEE monographs and more than 300 academic papers. He has applied for more than 100 patents, and he has been granted more than 60 national invention patents and 1 American patent.
Shunli Wang is a professor at the Southwest University of Science and Technology, China. He is an authoritative expert in the field of new energy research. He is the deputy head of NELab, modeling, and state estimation strategy research for lithium-ion batteries. He has undertaken more than 40 projects and 30 patents, published more than 150 research papers as well as won 20 awards such as the Young Scholar and Science & Technology Progress Awards.
Zonghai Chen is a professor at the University of Science and Technologyof China, China. His research interests include energy saving and new energy vehicle technology, complex system modeling, simulation and control, fuel cell system management, and optimal control. He has published more than 400 academic papers and applied for more than 40 patents.
Ran Xiong is a postgraduate student at Southwest University of Science and Technology, China. He is one of the group leaders of NELab. He is responsible for the electrochemical modeling and the health state estimation of energy storage batteries in NELab. He has participated in 5 projects and 6 patents, assisted in writing 3 academic monographs, and published 4 research papers as the first author or corresponding author, including 3 SCI papers.
Carlos Fernandez is a senior lecturer at Robert Gordon University, Scotland. He received his Ph.D. in Electrocatalytic Reactions from The University of Hull and then worked as a consultant technologist in Hull and in a post-doctoral position in Manchester. His research interests include Analytical Chemistry, Sensors and Materials, and Renewable Energy.
Daniel-I. Stroe is an associate professor with AAU Energy, Aalborg University, Denmark, and the leader of the Batteries research group. He received his Ph.D. degree in lifetime modeling of lithium-ion batteries from Aalborg University in 2010. He has co-authored one book and over 150 scientific peer-review publications on battery performance, modeling, and state estimation. His research interests include energy storage systems for grid and e-mobility, lithium-based battery testing, modeling, lifetime estimation, and diagnostics.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 103 pages. 9.25x6.10x0.24 inches. In Stock. N° de réf. du vendeur 981995343X
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Develops novel battery health state estimation methods of energy storage systemsIntroduces methods of battery degradation modes, including loss of active material and lithium inventory quantificationStudies the establishment of battery pack. N° de réf. du vendeur 913679528
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book investigates in detail long-term health state estimation technology of energy storage systems, assessing its potential use to replace common filtering methods that constructs by equivalent circuit model with a data-driven method combined with electrochemical modeling, which can reflect the battery internal characteristics, the battery degradation modes, and the battery pack health state. Studies on long-term health state estimation have attracted engineers and scientists from various disciplines, such as electrical engineering, materials, automation, energy, and chemical engineering. Pursuing a holistic approach, the book establishes a fundamental framework for this topic, while emphasizing the importance of extraction for health indicators and the significant influence of electrochemical modeling and data-driven issues in the design and optimization of health state estimation in energy storage systems. The book is intended for undergraduate and graduate students who are interested in new energy measurement and control technology, researchers investigating energy storage systems, and structure/circuit design engineers working on energy storage cell and pack. 104 pp. Englisch. N° de réf. du vendeur 9789819953431
Quantité disponible : 2 disponible(s)
Vendeur : preigu, Osnabrück, Allemagne
Taschenbuch. Etat : Neu. Long-Term Health State Estimation of Energy Storage Lithium-Ion Battery Packs | Qi Huang (u. a.) | Taschenbuch | xi | Englisch | 2023 | Springer | EAN 9789819953431 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. N° de réf. du vendeur 127223874
Quantité disponible : 5 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 104. N° de réf. du vendeur 26398554812
Quantité disponible : 4 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -This book investigates in detail long-term health state estimation technology of energy storage systems, assessing its potential use to replace common filtering methods that constructs by equivalent circuit model with a data-driven method combined with electrochemical modeling, which can reflect the battery internal characteristics, the battery degradation modes, and the battery pack health state. Studies on long-term health state estimation have attracted engineers and scientists from various disciplines, such as electrical engineering, materials, automation, energy, and chemical engineering. Pursuing a holistic approach, the book establishes a fundamental framework for this topic, while emphasizing the importance of extraction for health indicators and the significant influence of electrochemical modeling and data-driven issues in the design and optimization of health state estimation in energy storage systems. The book is intended for undergraduate and graduate students who are interested in new energy measurement and control technology, researchers investigating energy storage systems, and structure/circuit design engineers working on energy storage cell and pack.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 104 pp. Englisch. N° de réf. du vendeur 9789819953431
Quantité disponible : 2 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book investigates in detail long-term health state estimation technology of energy storage systems, assessing its potential use to replace common filtering methods that constructs by equivalent circuit model with a data-driven method combined with electrochemical modeling, which can reflect the battery internal characteristics, the battery degradation modes, and the battery pack health state. Studies on long-term health state estimation have attracted engineers and scientists from various disciplines, such as electrical engineering, materials, automation, energy, and chemical engineering. Pursuing a holistic approach, the book establishes a fundamental framework for this topic, while emphasizing the importance of extraction for health indicators and the significant influence of electrochemical modeling and data-driven issues in the design and optimization of health state estimation in energy storage systems. The book is intended for undergraduate and graduate students who are interested in new energy measurement and control technology, researchers investigating energy storage systems, and structure/circuit design engineers working on energy storage cell and pack. N° de réf. du vendeur 9789819953431
Quantité disponible : 1 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. 104. N° de réf. du vendeur 18398554806
Quantité disponible : 4 disponible(s)