A professional, applied manual for designing, building, and operationalizing knowledge graphs that materially improve LLM-driven systems. This book provides the end-to-end technical roadmap data ingestion, entity/relation extraction, schema design, storage, querying, and LLM integration required to create explainable, high-precision hybrid AI systems.
What’s inside
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 51341059-n
Quantité disponible : Plus de 20 disponibles
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Paperback. Etat : new. Paperback. A professional, applied manual for designing, building, and operationalizing knowledge graphs that materially improve LLM-driven systems. This book provides the end-to-end technical roadmap data ingestion, entity/relation extraction, schema design, storage, querying, and LLM integration required to create explainable, high-precision hybrid AI systems.What's insideFundamentals of graph modeling, schema & ontology design, and graph theory essentials.Practical pipelines for extracting structured facts from unstructured text using NLP and embeddings.Integration patterns for Neo4j/RDF/graph stores, vector databases, and RAG architectures.Querying and analytics: SPARQL, Cypher, and hybrid retrieval approaches.Performance optimization, versioning, governance, and visualization techniques.Domain case studies (healthcare, finance, enterprise search) demonstrating measurable ROI.Key topics;knowledge graphs, graph databases, ontology design, entity extraction, SPARQL, Cypher, RAG, embeddings, semantic search, graph-augmented LLMs, information retrieval, data governance.Who should read thisData engineers, knowledge engineers, ML/AI practitioners, and technical product managers tasked with building authoritative retrieval systems or explainable AI features. A working knowledge of databases and basic NLP is helpful.Deliverables & formatReproducible projects that convert raw text into production-ready graph assets.Query recipes, integration blueprints, and operational guidelines for graph maintenance and scaling. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9798264455261
Quantité disponible : 1 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. Print on Demand. N° de réf. du vendeur I-9798264455261
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 51341059
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 51341059
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 51341059-n
Quantité disponible : Plus de 20 disponibles
Vendeur : CitiRetail, Stevenage, Royaume-Uni
Paperback. Etat : new. Paperback. A professional, applied manual for designing, building, and operationalizing knowledge graphs that materially improve LLM-driven systems. This book provides the end-to-end technical roadmap data ingestion, entity/relation extraction, schema design, storage, querying, and LLM integration required to create explainable, high-precision hybrid AI systems.What's insideFundamentals of graph modeling, schema & ontology design, and graph theory essentials.Practical pipelines for extracting structured facts from unstructured text using NLP and embeddings.Integration patterns for Neo4j/RDF/graph stores, vector databases, and RAG architectures.Querying and analytics: SPARQL, Cypher, and hybrid retrieval approaches.Performance optimization, versioning, governance, and visualization techniques.Domain case studies (healthcare, finance, enterprise search) demonstrating measurable ROI.Key topics;knowledge graphs, graph databases, ontology design, entity extraction, SPARQL, Cypher, RAG, embeddings, semantic search, graph-augmented LLMs, information retrieval, data governance.Who should read thisData engineers, knowledge engineers, ML/AI practitioners, and technical product managers tasked with building authoritative retrieval systems or explainable AI features. A working knowledge of databases and basic NLP is helpful.Deliverables & formatReproducible projects that convert raw text into production-ready graph assets.Query recipes, integration blueprints, and operational guidelines for graph maintenance and scaling. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9798264455261
Quantité disponible : 1 disponible(s)