Unlock the full power of large language models with Mastering Retrieval-Augmented Generation (RAG). This hands-on guide walks you through building production-grade RAG systems that fuse transformer-based LLMs with cutting-edge vector databases, keyword-and-semantic hybrid search, and custom pipelines. You’ll start by mastering the core concepts of retrieval vs. generation, then dive into real-world tools—LlamaIndex, LangChain, Pinecone, Weaviate, and ChromaDB—to index, retrieve, and refine context at scale.
Each chapter is packed with proven recipes and end-to-end projects: from a legal-document QA assistant to a personalized news summarizer and a compliant healthcare chatbot. Learn how to optimize context injection, implement PEFT/LoRA fine-tuning, safeguard data privacy (GDPR/HIPAA), and deploy auto-scaling microservices with CI/CD. Detailed performance-tuning, monitoring strategies, and cost-management best practices ensure you deliver low-latency, high-accuracy applications.
Whether you’re an ML engineer, data scientist, or technical lead, this book arms you with the architecture patterns, code examples, and operational know-how to launch RAG-powered AI applications that users love—and trust. Dominate the RAG niche on Amazon and in production.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 50957376-n
Quantité disponible : Plus de 20 disponibles
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Paperback. Etat : new. Paperback. Unlock the full power of large language models with Mastering Retrieval-Augmented Generation (RAG). This hands-on guide walks you through building production-grade RAG systems that fuse transformer-based LLMs with cutting-edge vector databases, keyword-and-semantic hybrid search, and custom pipelines. You'll start by mastering the core concepts of retrieval vs. generation, then dive into real-world tools-LlamaIndex, LangChain, Pinecone, Weaviate, and ChromaDB-to index, retrieve, and refine context at scale.Each chapter is packed with proven recipes and end-to-end projects: from a legal-document QA assistant to a personalized news summarizer and a compliant healthcare chatbot. Learn how to optimize context injection, implement PEFT/LoRA fine-tuning, safeguard data privacy (GDPR/HIPAA), and deploy auto-scaling microservices with CI/CD. Detailed performance-tuning, monitoring strategies, and cost-management best practices ensure you deliver low-latency, high-accuracy applications.Whether you're an ML engineer, data scientist, or technical lead, this book arms you with the architecture patterns, code examples, and operational know-how to launch RAG-powered AI applications that users love-and trust. Dominate the RAG niche on Amazon and in production. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9798296901736
Quantité disponible : 1 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. Print on Demand. N° de réf. du vendeur I-9798296901736
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 50957376
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 50957376
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 50957376-n
Quantité disponible : Plus de 20 disponibles
Vendeur : CitiRetail, Stevenage, Royaume-Uni
Paperback. Etat : new. Paperback. Unlock the full power of large language models with Mastering Retrieval-Augmented Generation (RAG). This hands-on guide walks you through building production-grade RAG systems that fuse transformer-based LLMs with cutting-edge vector databases, keyword-and-semantic hybrid search, and custom pipelines. You'll start by mastering the core concepts of retrieval vs. generation, then dive into real-world tools-LlamaIndex, LangChain, Pinecone, Weaviate, and ChromaDB-to index, retrieve, and refine context at scale.Each chapter is packed with proven recipes and end-to-end projects: from a legal-document QA assistant to a personalized news summarizer and a compliant healthcare chatbot. Learn how to optimize context injection, implement PEFT/LoRA fine-tuning, safeguard data privacy (GDPR/HIPAA), and deploy auto-scaling microservices with CI/CD. Detailed performance-tuning, monitoring strategies, and cost-management best practices ensure you deliver low-latency, high-accuracy applications.Whether you're an ML engineer, data scientist, or technical lead, this book arms you with the architecture patterns, code examples, and operational know-how to launch RAG-powered AI applications that users love-and trust. Dominate the RAG niche on Amazon and in production. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9798296901736
Quantité disponible : 1 disponible(s)