"Large Language Models: A Step-by-Step Do It Yourself Guide" is an essential resource for those looking to understand and develop large language models (LLMs) from scratch. This comprehensive guide takes readers through the entire process, from foundational concepts to advanced techniques, ensuring a thorough understanding of both the theory and practical application of LLMs.
The book begins with an introduction to LLMs, covering their definitions, historical evolution, and key concepts. It explores various applications, including natural language processing, conversational AI, and text generation. Ethical considerations, such as bias and privacy, are also addressed, setting the stage for responsible AI development.
In the next section, readers are guided through the process of building their own LLMs. This includes setting up the development environment, understanding essential machine learning concepts, and collecting and preparing data. Detailed tutorials on model architecture and design follow, including insights into transformers, attention mechanisms, and custom model design. Training strategies and techniques are discussed, with practical examples of fine-tuning and transfer learning.
The book then shifts focus to deployment and practical use. It covers various deployment strategies, integrating LLMs with applications and services, and best practices for monitoring and maintaining models. Hands-on projects such as creating chatbots, text summarization tools, and personalized recommendation systems are included, offering readers real-world experience.
Advanced topics, including innovative training methods and case studies, round out the guide. Real-world examples, like implementing customer support bots and automating content generation, provide valuable insights into practical applications of LLMs.
Overall, this guide equips readers with the knowledge and skills needed to build, deploy, and optimize their own large language models, making it an indispensable resource for AI enthusiasts and professionals alike.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 17,49 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 4,73 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9798335168878_new
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. Print on Demand. N° de réf. du vendeur I-9798335168878
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 48234287
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 48234287-n
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 48234287
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 48234287-n
Quantité disponible : Plus de 20 disponibles
Vendeur : CitiRetail, Stevenage, Royaume-Uni
Paperback. Etat : new. Paperback. "Large Language Models: A Step-by-Step Do It Yourself Guide" is an essential resource for those looking to understand and develop large language models (LLMs) from scratch. This comprehensive guide takes readers through the entire process, from foundational concepts to advanced techniques, ensuring a thorough understanding of both the theory and practical application of LLMs.The book begins with an introduction to LLMs, covering their definitions, historical evolution, and key concepts. It explores various applications, including natural language processing, conversational AI, and text generation. Ethical considerations, such as bias and privacy, are also addressed, setting the stage for responsible AI development.In the next section, readers are guided through the process of building their own LLMs. This includes setting up the development environment, understanding essential machine learning concepts, and collecting and preparing data. Detailed tutorials on model architecture and design follow, including insights into transformers, attention mechanisms, and custom model design. Training strategies and techniques are discussed, with practical examples of fine-tuning and transfer learning.The book then shifts focus to deployment and practical use. It covers various deployment strategies, integrating LLMs with applications and services, and best practices for monitoring and maintaining models. Hands-on projects such as creating chatbots, text summarization tools, and personalized recommendation systems are included, offering readers real-world experience.Advanced topics, including innovative training methods and case studies, round out the guide. Real-world examples, like implementing customer support bots and automating content generation, provide valuable insights into practical applications of LLMs.Overall, this guide equips readers with the knowledge and skills needed to build, deploy, and optimize their own large language models, making it an indispensable resource for AI enthusiasts and professionals alike. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9798335168878
Quantité disponible : 1 disponible(s)
Vendeur : Grand Eagle Retail, Fairfield, OH, Etats-Unis
Paperback. Etat : new. Paperback. "Large Language Models: A Step-by-Step Do It Yourself Guide" is an essential resource for those looking to understand and develop large language models (LLMs) from scratch. This comprehensive guide takes readers through the entire process, from foundational concepts to advanced techniques, ensuring a thorough understanding of both the theory and practical application of LLMs.The book begins with an introduction to LLMs, covering their definitions, historical evolution, and key concepts. It explores various applications, including natural language processing, conversational AI, and text generation. Ethical considerations, such as bias and privacy, are also addressed, setting the stage for responsible AI development.In the next section, readers are guided through the process of building their own LLMs. This includes setting up the development environment, understanding essential machine learning concepts, and collecting and preparing data. Detailed tutorials on model architecture and design follow, including insights into transformers, attention mechanisms, and custom model design. Training strategies and techniques are discussed, with practical examples of fine-tuning and transfer learning.The book then shifts focus to deployment and practical use. It covers various deployment strategies, integrating LLMs with applications and services, and best practices for monitoring and maintaining models. Hands-on projects such as creating chatbots, text summarization tools, and personalized recommendation systems are included, offering readers real-world experience.Advanced topics, including innovative training methods and case studies, round out the guide. Real-world examples, like implementing customer support bots and automating content generation, provide valuable insights into practical applications of LLMs.Overall, this guide equips readers with the knowledge and skills needed to build, deploy, and optimize their own large language models, making it an indispensable resource for AI enthusiasts and professionals alike. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9798335168878
Quantité disponible : 1 disponible(s)