Articles liés à Federated Learning and Privacy-Preserving in Healthcare...

Federated Learning and Privacy-Preserving in Healthcare AI (Advances in Healthcare Information Systems and Administration) - Couverture souple

 
9798369366523: Federated Learning and Privacy-Preserving in Healthcare AI (Advances in Healthcare Information Systems and Administration)

Synopsis

The use of artificial intelligence (AI) in data-driven medicine has revolutionized healthcare, presenting practitioners with unprecedented tools for diagnosis and personalized therapy. However, this progress comes with a critical concern: the security and privacy of sensitive patient data. As healthcare increasingly leans on AI, the need for robust solutions to safeguard patient information has become more pressing than ever. Federated Learning and Privacy-Preserving in Healthcare AI emerges as the definitive solution to balancing medical progress with patient data security. This carefully curated volume not only outlines the challenges of federated learning but also provides a roadmap for implementing privacy-preserving AI systems in healthcare. By decentralizing the training of AI models, federated learning mitigates the risks associated with centralizing patient data, ensuring that critical information never leaves its original location. Aimed at healthcare professionals, AI experts, policymakers, and academics, this book not only delves into the technical aspects of federated learning but also fosters a collaborative approach to address the multifaceted challenges at the intersection of healthcare and AI.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos des auteurs

Umesh Kumar Lilhore is currently a Professor at the School of Computing Science & Engineering (CSE) at Galgotia University, Greater Noida. With over 19 years of teaching and 8 years of research experience, he has previously held positions at various renowned universities and colleges in India and abroad. Dr. Lilhore holds a Ph.D. and M.Tech in CSE and has completed his postdoctoral research at the Institute of Advanced Computing, University of Louisiana at Lafayette. He has a strong publication record with articles in reputed, peer-reviewed national and international Scopus journals and conferences.

Sarita Simaiya is a distinguished Professor at the School of Computing Science & Engineering (CSE) at Galgotias University, Greater Noida. Boasting over 17 years of teaching and 8 years of research experience, Dr. Sarita has held esteemed positions at various prestigious universities and colleges in India and abroad. With a Ph.D. and M.Tech, BE in CSE, Dr. Sarita completed postdoctoral research at the Institute of Advanced Computing, University of Louisiana at Lafayette. His extensive publication record includes articles in reputed, peer- reviewed national and international Scopus journals and conferences.

Dr. M. Poongodi received the B.Tech. degree in information technology (IT) from Anna University, Chennai, the M.E. degree in computer science (CSE) from St.Peters University, and the Ph.D. degree in information security from Anna University. She has teaching experience of more than five years. Her many cited publications in highly indexed journals talks about her vast knowledge and skill set in the area of blended areas network security, the IoT, machine learning, and deep learning. Her research interest is also extended in the areas of network analysis using social networking, mobile computing, Web services, 4G communication, cloud computing, and information security through anomaly detection. She is a renowned expert in networks field and a mass stunning speaker who has inspired a lot of students on network simulation through her hands on experience sessions. Many students have been done their B.E., M.E., M.Tech., and MCA projects under her guidance. She is with Hamad Bin Khalifa University and having expertise in many research areas.

Mr. Vishal Dutt is pursuing a Ph.D. in Cryosphere with Remote Sensing from Punjabi University, Patiala, India and received MCA from Maharshi Dayanand Saraswati University, India. He is working as a technical trainer at Chandigarh University, Punjab, India, blending academia and industry expertise. He's actively involved in cutting-edge research in computer engineering, also excelling as a trainer in Research and Development since 2016. With over 8 years of teaching and research experience, he boasts 50+ publications in prestigious national and international journals, conferences, and book chapters, including SCI and Scopus-indexed journals. Vishal has contributed to editing numerous books and is actively engaged in three more publications with Wiley. Furthermore, he offers peer review services for esteemed publishers like Elsevier, Springer, and IEEE Access, focusing on research areas including Remote Sensing, Cryosphere, Data Science, Data Mining, Machine Learning, and Deep Learning.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter neuf

Afficher cet article
EUR 287,55

Autre devise

EUR 4,62 expédition depuis Royaume-Uni vers France

Destinations, frais et délais

Résultats de recherche pour Federated Learning and Privacy-Preserving in Healthcare...

Image d'archives

Edité par IGI Global, 2024
ISBN 13 : 9798369366523
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9798369366523_new

Contacter le vendeur

Acheter neuf

EUR 287,55
Autre devise
Frais de port : EUR 4,62
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Edité par IGI Global, 2024
ISBN 13 : 9798369366523
Neuf PAP
impression à la demande

Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9798369366523

Contacter le vendeur

Acheter neuf

EUR 296,09
Autre devise
Frais de port : EUR 5,99
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Umesh Kumar Lilhore
Edité par IGI Global, Hershey, 2024
ISBN 13 : 9798369366523
Neuf Paperback

Vendeur : CitiRetail, Stevenage, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : new. Paperback. The use of artificial intelligence (AI) in data-driven medicine has revolutionized healthcare, presenting practitioners with unprecedented tools for diagnosis and personalized therapy. However, this progress comes with a critical concern: the security and privacy of sensitive patient data. As healthcare increasingly leans on AI, the need for robust solutions to safeguard patient information has become more pressing than ever. As AI use begins to increase in healthcare, the specter of data breaches, privacy infringements, and ethical quandaries appear formidable. Patient data, a cornerstone of medical advancement, becomes susceptible to compromise, necessitating a delicate balance between innovation and safeguarding individual privacy. Existing concerns focus on the potential misuse and unauthorized access to this sensitive information, resulting in a significant obstacle to the full realization of AI's potential in healthcare. Federated Learning and Privacy-Preserving in Healthcare AI emerges as the definitive solution to balancing medical progress with patient data security. This carefully curated volume not only outlines the challenges of federated learning but also provides a roadmap for implementing privacy-preserving AI systems in healthcare. By decentralizing the training of AI models, federated learning mitigates the risks associated with centralizing patient data, ensuring that critical information never leaves its original location. Aimed at healthcare professionals, AI experts, policymakers, and academics, this book not only delves into the technical aspects of federated learning but also fosters a collaborative approach to address the multifaceted challenges at the intersection of healthcare and AI. For those seeking a comprehensive guide to navigate the complexities of AI in healthcare while upholding patient privacy, this reference book serves as an indispensable resource. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9798369366523

Contacter le vendeur

Acheter neuf

EUR 301,07
Autre devise
Frais de port : EUR 28,94
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Edité par IGI Global, 2024
ISBN 13 : 9798369366523
Neuf PAP
impression à la demande

Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

PAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9798369366523

Contacter le vendeur

Acheter neuf

EUR 332,17
Autre devise
Frais de port : EUR 0,16
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier