Adaptive Stream Mining: Pattern Learning and Mining from Evolving Data Streams

Bifet, A. (Editor)

ISBN 10: 1607500906 ISBN 13: 9781607500902
Edité par Ios Pr Inc, 2010
Neuf(s) Hardcover

Vendeur Revaluation Books, Exeter, Royaume-Uni Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Vendeur AbeBooks depuis 6 janvier 2003


A propos de cet article

Description :

212 pages. 9.75x6.75x0.75 inches. In Stock. N° de réf. du vendeur x-1607500906

Signaler cet article

Synopsis :

This book is a significant contribution to the subject of mining time-changing data streams and addresses the design of learning algorithms for this purpose. It introduces new contributions on several different aspects of the problem, identifying research opportunities and increasing the scope for applications. It also includes an in-depth study of stream mining and a theoretical analysis of proposed methods and algorithms. The first section is concerned with the use of an adaptive sliding window algorithm (ADWIN). Since this has rigorous performance guarantees, using it in place of counters or accumulators, it offers the possibility of extending such guarantees to learning and mining algorithms not initially designed for drifting data. Testing with several methods, including Naive Bayes, clustering, decision trees and ensemble methods, is discussed as well. The second part of the book describes a formal study of connected acyclic graphs, or 'trees', from the point of view of closure-based mining, presenting efficient algorithms for subtree testing and for mining ordered and unordered frequent closed trees. Lastly, a general methodology to identify closed patterns in a data stream is outlined. This is applied to develop an incremental method, a sliding-window based method, and a method that mines closed trees adaptively from data streams. These are used to introduce classification methods for tree data streams.

Présentation de l'éditeur: This book is a significant contribution to the subject of mining time-changing data streams and addresses the design of learning algorithms for this purpose. It introduces new contributions on several different aspects of the problem, identifying research opportunities and increasing the scope for applications. It also includes an in-depth study of stream mining and a theoretical analysis of proposed methods and algorithms. The first section is concerned with the use of an adaptive sliding window algorithm (ADWIN). Since this has rigorous performance guarantees, using it in place of counters or accumulators, it offers the possibility of extending such guarantees to learning and mining algorithms not initially designed for drifting data. Testing with several methods, including Naïve Bayes, clustering, decision trees and ensemble methods, is discussed as well. The second part of the book describes a formal study of connected acyclic graphs, or trees, from the point of view of closure-based mining, presenting efficient algorithms for subtree testing and for mining ordered and unordered frequent closed trees. Lastly, a general methodology to identify closed patterns in a data stream is outlined. This is applied to develop an incremental method, a sliding-window based method, and a method that mines closed trees adaptively from data streams. These are used to introduce classification methods for tree data streams.

IOS Press is an international science, technical and medical publisher of high-quality books for academics, scientists, and professionals in all fields.

Some of the areas we publish in:

-Biomedicine
-Oncology
-Artificial intelligence
-Databases and information systems
-Maritime engineering
-Nanotechnology
-Geoengineering
-All aspects of physics
-E-governance
-E-commerce
-The knowledge economy
-Urban studies
-Arms control
-Understanding and responding to terrorism
-Medical informatics
-Computer Sciences

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Détails bibliographiques

Titre : Adaptive Stream Mining: Pattern Learning and...
Éditeur : Ios Pr Inc
Date d'édition : 2010
Reliure : Hardcover
Etat : Brand New

Meilleurs résultats de recherche sur AbeBooks

Image d'archives

A. Bifet
Edité par SAGE Publications, Limited, 2010
ISBN 10 : 1607500906 ISBN 13 : 9781607500902
Ancien ou d'occasion Couverture rigide

Vendeur : Better World Books: West, Reno, NV, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : Good. Used book that is in clean, average condition without any missing pages. N° de réf. du vendeur 53541883-75

Contacter le vendeur

Acheter D'occasion

EUR 119,45
Livraison gratuite
Expédition nationale : Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

A. Bifet
Edité par IOS Press, 2010
ISBN 10 : 1607500906 ISBN 13 : 9781607500902
Ancien ou d'occasion Couverture rigide

Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : Like New. Like New. book. N° de réf. du vendeur ERICA77816075009066

Contacter le vendeur

Acheter D'occasion

EUR 232,46
EUR 28,64 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier