Algebraic Geometry and Arithmetic Curves

Liu, Qing

ISBN 10: 0198502842 ISBN 13: 9780198502845
Edité par Oxford University Press, 2002
Ancien(s) ou d'occasion Couverture rigide

Vendeur OM Books, Sevilla, SE, Espagne Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Vendeur AbeBooks depuis 27 janvier 2022


A propos de cet article

Description :

N° de réf. du vendeur 9780198502845

Signaler cet article

Synopsis :

This book is a general introduction to the theory of schemes, followed by applications to arithmetic surfaces and to the theory of reduction of algebraic curves.

The first part introduces basic objects such as schemes, morphisms, base change, local properties (normality, regularity, Zariski's Main Theorem). This is followed by the more global aspect: coherent sheaves and a finiteness theorem for their cohomology groups. Then follows a chapter on sheaves of differentials, dualizing sheaves, and Grothendieck's duality theory. The first part ends with the theorem of Riemann-Roch and its application to the study of smooth projective curves over a field. Singular curves are treated through a detailed study of the Picard group.

The second part starts with blowing-ups and desingularisation (embedded or not) of fibered surfaces over a Dedekind ring that leads on to intersection theory on arithmetic surfaces. Castelnuovo's criterion is proved and also the existence of the minimal regular model. This leads to the study of reduction of algebraic curves. The case of elliptic curves is studied in detail. The book concludes with the funadmental theorem of stable reduction of Deligne-Mumford.

The book is essentially self-contained, including the necessary material on commutative algebra. The prerequisites are therefore few, and the book should suit a graduate student. It contains many examples and nearly 600 exercises.

Présentation de l'éditeur: This book is a general introduction to the theory of schemes, followed by applications to arithmetic surfaces and to the theory of reduction of algebraic curves. The first part introduces basic objects such as schemes, morphisms, base change, local properties (normality, regularity, Zariski's Main Theorem). This is followed by the more global aspect: coherent sheaves and a finiteness theorem for their cohomology groups. Then follows a chapter on sheaves of differentials, dualizing sheaves, and Grothendieck's duality theory. The first part ends with the theorem of Riemann-Roch and its application to the study of smooth projective curves over a field. Singular curves are treated through a detailed study of the Picard group. The second part starts with blowing-ups and desingularisation (embedded or not) of fibered surfaces over a Dedekind ring that leads on to intersection theory on arithmetic surfaces. Castelnuovo's criterion is proved and also the existence of the minimal regular model. This leads to the study of reduction of algebraic curves. The case of elliptic curves is studied in detail. The book concludes with the funadmental theorem of stable reduction of Deligne-Mumford. The book is essentially self-contained, including the necessary material on commutative algebra. The prerequisites are therefore few, and the book should suit a graduate student. It contains many examples and nearly 600 exercises.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Détails bibliographiques

Titre : Algebraic Geometry and Arithmetic Curves
Éditeur : Oxford University Press
Date d'édition : 2002
Reliure : Couverture rigide
Etat : Usado - bueno

Meilleurs résultats de recherche sur AbeBooks

Image d'archives

Qing Liu
ISBN 10 : 0198502842 ISBN 13 : 9780198502845
Neuf Couverture rigide
impression à la demande

Vendeur : CitiRetail, Stevenage, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : new. Hardcover. This book is a general introduction to the theory of schemes, followed by applications to arithmetic surfaces and to the theory of reduction of algebraic curves. The first part introduces basic objects such as schemes, morphisms, base change, local properties (normality, regularity, Zariski's Main Theorem). This is followed by the more global aspect: coherent sheaves and a finiteness theorem for their cohomology groups. Then follows a chapteron sheaves of differentials, dualizing sheaves, and Grothendieck's duality theory. The first part ends with the theorem of Riemann-Roch and its application to the study of smooth projective curves overa field. Singular curves are treated through a detailed study of the Picard group.The second part starts with blowing-ups and desingularisation (embedded or not) of fibered surfaces over a Dedekind ring that leads on to intersection theory on arithmetic surfaces. Castelnuovo's criterion is proved and also the existence of the minimal regular model. This leads to the study of reduction of algebraic curves. The case of elliptic curves is studied in detail. The book concludeswith the funadmental theorem of stable reduction of Deligne-Mumford.The book is essentially self-contained, including the necessary material on commutative algebra. Theprerequisites are therefore few, and the book should suit a graduate student. It contains many examples and nearly 600 exercises. Based on the author's course for first-year graduate students this text explains how the tools of algebraic geometry and of number theory can be applied to a study of curves. The book starts by introducing the essential background material and includes 600 exercises. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9780198502845

Contacter le vendeur

Acheter neuf

EUR 150,26
EUR 42,41 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Liu, Qing
Edité par Oxford University Press, 2002
ISBN 10 : 0198502842 ISBN 13 : 9780198502845
Neuf Couverture rigide

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 75730-n

Contacter le vendeur

Acheter neuf

EUR 150,27
EUR 17,19 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Liu, Qing
Edité par Oxford University Press, 2002
ISBN 10 : 0198502842 ISBN 13 : 9780198502845
Neuf Couverture rigide

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9780198502845_new

Contacter le vendeur

Acheter neuf

EUR 151,20
EUR 13,73 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Qing , Laboratoire de Theorie des Nombres et d'Algorithmique Arithmetique, Universite Bordeaux 1) L
Edité par Oxford University Press, 2002
ISBN 10 : 0198502842 ISBN 13 : 9780198502845
Neuf Couverture rigide
impression à la demande

Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

HRD. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L1-9780198502845

Contacter le vendeur

Acheter neuf

EUR 157,02
EUR 7,75 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Qing Liu
ISBN 10 : 0198502842 ISBN 13 : 9780198502845
Neuf Couverture rigide

Vendeur : AussieBookSeller, Truganina, VIC, Australie

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : new. Hardcover. This book is a general introduction to the theory of schemes, followed by applications to arithmetic surfaces and to the theory of reduction of algebraic curves. The first part introduces basic objects such as schemes, morphisms, base change, local properties (normality, regularity, Zariski's Main Theorem). This is followed by the more global aspect: coherent sheaves and a finiteness theorem for their cohomology groups. Then follows a chapteron sheaves of differentials, dualizing sheaves, and Grothendieck's duality theory. The first part ends with the theorem of Riemann-Roch and its application to the study of smooth projective curves overa field. Singular curves are treated through a detailed study of the Picard group.The second part starts with blowing-ups and desingularisation (embedded or not) of fibered surfaces over a Dedekind ring that leads on to intersection theory on arithmetic surfaces. Castelnuovo's criterion is proved and also the existence of the minimal regular model. This leads to the study of reduction of algebraic curves. The case of elliptic curves is studied in detail. The book concludeswith the funadmental theorem of stable reduction of Deligne-Mumford.The book is essentially self-contained, including the necessary material on commutative algebra. Theprerequisites are therefore few, and the book should suit a graduate student. It contains many examples and nearly 600 exercises. Based on the author's course for first-year graduate students this text explains how the tools of algebraic geometry and of number theory can be applied to a study of curves. The book starts by introducing the essential background material and includes 600 exercises. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. N° de réf. du vendeur 9780198502845

Contacter le vendeur

Acheter neuf

EUR 157,76
EUR 31,40 shipping
Expédition depuis Australie vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Liu, Qing
Edité par Oxford University Press, 2002
ISBN 10 : 0198502842 ISBN 13 : 9780198502845
Neuf Couverture rigide

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 75730-n

Contacter le vendeur

Acheter neuf

EUR 160,58
EUR 2,24 shipping
Expédition nationale : Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Qing , Laboratoire de Theorie des Nombres et d'Algorithmique Arithmetique, Universite Bordeaux 1) L
Edité par Oxford University Press, 2002
ISBN 10 : 0198502842 ISBN 13 : 9780198502845
Neuf Couverture rigide
impression à la demande

Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

HRD. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L1-9780198502845

Contacter le vendeur

Acheter neuf

EUR 162,89
Livraison gratuite
Expédition nationale : Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Liu, Qing
Edité par Oxford University Press., 2002
ISBN 10 : 0198502842 ISBN 13 : 9780198502845
Ancien ou d'occasion Karton

Vendeur : Antiquariat Bernhardt, Kassel, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Karton. Etat : Sehr gut. Zust: Gutes Exemplar. 576 Seiten, mit Abbildungen, Englisch 970g. N° de réf. du vendeur 494380

Contacter le vendeur

Acheter D'occasion

EUR 163,83
EUR 39,95 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Liu, Qing
Edité par Oxford University Press, 2002
ISBN 10 : 0198502842 ISBN 13 : 9780198502845
Neuf Couverture rigide

Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur ABLIING23Feb2215580042582

Contacter le vendeur

Acheter neuf

EUR 203,40
EUR 3,39 shipping
Expédition nationale : Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Qing Liu, Reinie Erne
Edité par Oxford University Press, GB, 2002
ISBN 10 : 0198502842 ISBN 13 : 9780198502845
Neuf Couverture rigide

Vendeur : Rarewaves.com UK, London, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardback. Etat : New. This book is a general introduction to the theory of schemes, followed by applications to arithmetic surfaces and to the theory of reduction of algebraic curves. The first part introduces basic objects such as schemes, morphisms, base change, local properties (normality, regularity, Zariski's Main Theorem). This is followed by the more global aspect: coherent sheaves and a finiteness theorem for their cohomology groups. Then follows a chapter on sheaves of differentials, dualizing sheaves, and Grothendieck's duality theory. The first part ends with the theorem of Riemann-Roch and its application to the study of smooth projective curves over a field. Singular curves are treated through a detailed study of the Picard group.The second part starts with blowing-ups and desingularisation (embedded or not) of fibered surfaces over a Dedekind ring that leads on to intersection theory on arithmetic surfaces. Castelnuovo's criterion is proved and also the existence of the minimal regular model. This leads to the study of reduction of algebraic curves. The case of elliptic curves is studied in detail. The book concludes with the funadmental theorem of stable reduction of Deligne-Mumford.The book is essentially self-contained, including the necessary material on commutative algebra. The prerequisites are therefore few, and the book should suit a graduate student. It contains many examples and nearly 600 exercises. N° de réf. du vendeur LU-9780198502845

Contacter le vendeur

Acheter neuf

EUR 211,70
EUR 74,51 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

There are 8 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre