Algorithmic Learning in a Random World (Paperback)

Vladimir Vovk

ISBN 10: 3031066510 ISBN 13: 9783031066511
Edité par Springer International Publishing AG, Cham, 2023
Neuf(s) Paperback

Vendeur CitiRetail, Stevenage, Royaume-Uni Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Vendeur AbeBooks depuis 29 juin 2022


A propos de cet article

Description :

Paperback. This book is about conformal prediction, an approach to prediction that originated in machine learning in the late 1990s. The main feature of conformal prediction is the principled treatment of the reliability of predictions. The prediction algorithms described conformal predictors are provably valid in the sense that they evaluate the reliability of their own predictions in a way that is neither over-pessimistic nor over-optimistic (the latter being especially dangerous). The approach is still flexible enough to incorporate most of the existing powerful methods of machine learning. The book covers both key conformal predictors and the mathematical analysis of their properties.Algorithmic Learning in a Random World contains, in addition to proofs of validity, results about the efficiency of conformal predictors. The only assumption required for validity is that of "randomness" (the prediction algorithm is presented with independent and identically distributed examples); in later chapters, even the assumption of randomness is significantly relaxed. Interesting results about efficiency are established both under randomness and under stronger assumptions.Since publication of the First Edition in 2005 conformal prediction has found numerous applications in medicine and industry, and is becoming a popular machine-learning technique. This Second Edition contains three new chapters. One is about conformal predictive distributions, which are more informative than the set predictions produced by standard conformal predictors. Another is about the efficiency of ways of testing the assumption of randomness based on conformal prediction. The third new chapter harnesses conformal testing procedures for protecting machine-learning algorithms against changes in the distribution of the data. In addition, the existing chapters have been revised, updated, and expanded. This book is about conformal prediction, an approach to prediction that originated in machine learning in the late 1990s. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9783031066511

Signaler cet article

Synopsis :

This book is about conformal prediction, an approach to prediction that originated in machine learning in the late 1990s. The main feature of conformal prediction is the principled treatment of the reliability of predictions. The prediction algorithms described -- conformal predictors -- are provably valid in the sense that they evaluate the reliability of their own predictions in a way that is neither over-pessimistic nor over-optimistic (the latter being especially dangerous). The approach is still flexible enough to incorporate most of the existing powerful methods of machine learning. The book covers both key conformal predictors and the mathematical analysis of their properties.

Algorithmic Learning in a Random World contains, in addition to proofs of validity, results about the efficiency of conformal predictors. The only assumption required for validity is that of "randomness" (the prediction algorithm is presented with independent and identically distributed examples); in later chapters, even the assumption of randomness is significantly relaxed. Interesting results about efficiency are established both under randomness and under stronger assumptions.

Since publication of the First Edition in 2005 conformal prediction has found numerous applications in medicine and industry, and is becoming a popular machine-learning technique. This Second Edition contains three new chapters. One is about conformal predictive distributions, which are more informative than the set predictions produced by standard conformal predictors. Another is about the efficiency of ways of testing the assumption of randomness based on conformal prediction. The third new chapter harnesses conformal testing procedures for protecting machine-learning algorithms against changes in the distribution of the data. In addition, the existing chapters have been revised, updated, and expanded.


À propos de l?auteur: Vladimir Vovk is Professor of Computer Science at Royal Holloway, University of London. His research interests include machine learning and the foundations of probability and statistics. He was one of the founders of prediction with expert advice, an area of machine learning avoiding making any statistical assumptions about the data. Together with Glenn Shafer and with original inspiration from Philip Dawid, he developed game-theoretic foundations for probability and statistics.

Alexander Gammerman is Professor of Computer Science and co-Director of the Centre for Reliable Machine Learning at Royal Holloway, University of London. His research interests lie in machine learning and pattern recognition, where the majority of his research books, papers, and grants can be found. He is a Fellow of the Royal Statistical Society and has held visiting and honorary professorships from several universities in Europe and the USA.

Glenn Shafer is Professor and formerDean of the Rutgers Business School - Newark and New Brunswick. He is best known for his work in the 1970s and 1980s on the Dempster-Shafer theory, an alternative theory of probability that has been applied widely in engineering and artificial intelligence. Glenn is also known for his initiation, with Vladimir Vovk, of the game-theoretic framework for probability. Their first book on the topic was Probability and Finance: It's Only a Game! A new book on the topic, Game-Theoretic Foundations for Probability and Finance, published in 2019 (Wiley).

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Détails bibliographiques

Titre : Algorithmic Learning in a Random World (...
Éditeur : Springer International Publishing AG, Cham
Date d'édition : 2023
Reliure : Paperback
Etat : new
Edition : 2ème Édition

Meilleurs résultats de recherche sur AbeBooks

Image d'archives

Vovk, Vladimir,Gammerman, Alexander,Shafer, Glenn
Edité par Springer, 2023
ISBN 10 : 3031066510 ISBN 13 : 9783031066511
Ancien ou d'occasion paperback

Vendeur : Books From California, Simi Valley, CA, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

paperback. Etat : Fine. N° de réf. du vendeur mon0003865434

Contacter le vendeur

Acheter D'occasion

EUR 123,08
Expédition à EUR 4,29
Expédition nationale : Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Vladimir Vovk|Alexander Gammerman|Glenn Shafer
ISBN 10 : 3031066510 ISBN 13 : 9783031066511
Neuf Couverture souple
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents conformal prediction, which is a valuable new method for practitioners of machine learning and statisticsCovers probabilistic predictors, which when combined with suitable loss functions facilitate practical decision-makingThe pred. N° de réf. du vendeur 1252895650

Contacter le vendeur

Acheter neuf

EUR 153,73
Expédition à EUR 48,99
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Vladimir Vovk (u. a.)
Edité par Springer, 2023
ISBN 10 : 3031066510 ISBN 13 : 9783031066511
Neuf Taschenbuch
impression à la demande

Vendeur : preigu, Osnabrück, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Algorithmic Learning in a Random World | Vladimir Vovk (u. a.) | Taschenbuch | xxvi | Englisch | 2023 | Springer | EAN 9783031066511 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. N° de réf. du vendeur 128036810

Contacter le vendeur

Acheter neuf

EUR 159,40
Expédition à EUR 70
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 5 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Vovk, Vladimir; Gammerman, Alexander; Shafer, Glenn
Edité par Springer, 2023
ISBN 10 : 3031066510 ISBN 13 : 9783031066511
Neuf Couverture souple

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 46832477-n

Contacter le vendeur

Acheter neuf

EUR 171,39
Expédition à EUR 17,30
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Vovk, Vladimir; Gammerman, Alexander; Shafer, Glenn
Edité par Springer, 2023
ISBN 10 : 3031066510 ISBN 13 : 9783031066511
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9783031066511_new

Contacter le vendeur

Acheter neuf

EUR 171,40
Expédition à EUR 13,82
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Vladimir Vovk
ISBN 10 : 3031066510 ISBN 13 : 9783031066511
Neuf Taschenbuch

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is about conformal prediction, an approach to prediction that originated in machine learning in the late 1990s. The main feature of conformal prediction is the principled treatment of the reliability of predictions. The prediction algorithms described-conformal predictors-are provably valid in the sense that they evaluate the reliability of their own predictions in a way that is neither over-pessimistic nor over-optimistic (the latter being especially dangerous). The approach is still flexible enough to incorporate most of the existing powerful methods of machine learning. The book covers both key conformal predictors and the mathematical analysis of their properties.Algorithmic Learning in a Random Worldcontains, in addition to proofs of validity, results about the efficiency of conformal predictors. The only assumption required for validity is that of 'randomness' (the prediction algorithm is presented with independent and identically distributed examples); in later chapters, even the assumption of randomness is significantly relaxed. Interesting results about efficiency are established both under randomness and under stronger assumptions.Since publication of the First Edition in 2005 conformal prediction has found numerous applications in medicine and industry, and is becoming a popular machine-learning technique. This Second Edition contains three new chapters. One is about conformal predictive distributions, which are more informative than the set predictions produced by standard conformal predictors. Another is about the efficiency of ways of testing the assumption of randomness based on conformal prediction. The third new chapter harnesses conformal testing procedures for protecting machine-learning algorithms against changes in the distribution of the data. In addition, the existing chapters have been revised, updated, and expanded. N° de réf. du vendeur 9783031066511

Contacter le vendeur

Acheter neuf

EUR 181,89
Expédition à EUR 63,78
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Vladimir Vovk
ISBN 10 : 3031066510 ISBN 13 : 9783031066511
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is about conformal prediction, an approach to prediction that originated in machine learning in the late 1990s. The main feature of conformal prediction is the principled treatment of the reliability of predictions. The prediction algorithms described-conformal predictors-are provably valid in the sense that they evaluate the reliability of their own predictions in a way that is neither over-pessimistic nor over-optimistic (the latter being especially dangerous). The approach is still flexible enough to incorporate most of the existing powerful methods of machine learning. The book covers both key conformal predictors and the mathematical analysis of their properties.Algorithmic Learning in a Random Worldcontains, in addition to proofs of validity, results about the efficiency of conformal predictors. The only assumption required for validity is that of 'randomness' (the prediction algorithm is presented with independent and identically distributed examples); in later chapters, even the assumption of randomness is significantly relaxed. Interesting results about efficiency are established both under randomness and under stronger assumptions.Since publication of the First Edition in 2005 conformal prediction has found numerous applications in medicine and industry, and is becoming a popular machine-learning technique. This Second Edition contains three new chapters. One is about conformal predictive distributions, which are more informative than the set predictions produced by standard conformal predictors. Another is about the efficiency of ways of testing the assumption of randomness based on conformal prediction. The third new chapter harnesses conformal testing procedures for protecting machine-learning algorithms against changes in the distribution of the data. In addition, the existing chapters have been revised, updated, and expanded. 504 pp. Englisch. N° de réf. du vendeur 9783031066511

Contacter le vendeur

Acheter neuf

EUR 181,89
Expédition à EUR 23
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Vladimir Vovk
ISBN 10 : 3031066510 ISBN 13 : 9783031066511
Neuf Taschenbuch
impression à la demande

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book is about conformal prediction, an approach to prediction that originated in machine learning in the late 1990s. The main feature of conformal prediction is the principled treatment of the reliability of predictions. The prediction algorithms described ¿ conformal predictors ¿ are provably valid in the sense that they evaluate the reliability of their own predictions in a way that is neither over-pessimistic nor over-optimistic (the latter being especially dangerous). The approach is still flexible enough to incorporate most of the existing powerful methods of machine learning. The book covers both key conformal predictors and the mathematical analysis of their properties.Algorithmic Learning in a Random World contains, in addition to proofs of validity, results about the efficiency of conformal predictors. The only assumption required for validity is that of 'randomness' (the prediction algorithm is presented with independent and identically distributed examples); in later chapters, even the assumption of randomness is significantly relaxed. Interesting results about efficiency are established both under randomness and under stronger assumptions.Since publication of the First Edition in 2005 conformal prediction has found numerous applications in medicine and industry, and is becoming a popular machine-learning technique. This Second Edition contains three new chapters. One is about conformal predictive distributions, which are more informative than the set predictions produced by standard conformal predictors. Another is about the efficiency of ways of testing the assumption of randomness based on conformal prediction. The third new chapter harnesses conformal testing procedures for protecting machine-learning algorithms against changes in the distribution of the data. In addition, the existing chapters have been revised, updated, and expanded.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 504 pp. Englisch. N° de réf. du vendeur 9783031066511

Contacter le vendeur

Acheter neuf

EUR 181,89
Expédition à EUR 60
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Vovk, Vladimir; Gammerman, Alexander; Shafer, Glenn
Edité par Springer, 2023
ISBN 10 : 3031066510 ISBN 13 : 9783031066511
Neuf Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 46832477-n

Contacter le vendeur

Acheter neuf

EUR 188,99
Expédition à EUR 2,27
Expédition nationale : Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Vovk, Vladimir; Gammerman, Alexander; Shafer, Glenn
Edité par Springer, 2023
ISBN 10 : 3031066510 ISBN 13 : 9783031066511
Ancien ou d'occasion Couverture souple

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 46832477

Contacter le vendeur

Acheter D'occasion

EUR 197,15
Expédition à EUR 17,30
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

There are 6 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre