The AutoML Edge: Creating High-Performance Trading Algorithms Without Coding: AutoML Democratizes Algorithmic Trading, Enabling Traders to Leverage . Code (Artificial Intelligence Without Coding)

Lomovasky, Dr Israel Carlos

ISBN 13: 9798340424679
Edité par Independently published, 2024
Neuf(s) Couverture souple

Vendeur Ria Christie Collections, Uxbridge, Royaume-Uni Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Vendeur AbeBooks depuis 25 mars 2015

Nous sommes désolés, cet exemplaire spécifique n'est plus disponible. Voici nos correspondances les plus proches pour The AutoML Edge: Creating High-Performance Trading Algorithms Without Coding: AutoML Democratizes Algorithmic Trading, Enabling Traders to Leverage . Code (Artificial Intelligence Without Coding) de Lomovasky, Dr Israel Carlos.

A propos de cet article

Description :

In. N° de réf. du vendeur ria9798340424679_new

Signaler cet article

Synopsis :

"The AutoML Edge: Creating High-Performance Trading Algorithms Without Coding" is a groundbreaking guide designed to demystify the world of algorithmic trading, making it accessible to readers of all backgrounds—whether you're a beginner, an intermediate trader, or an advanced market participant. This book offers a step-by-step approach to mastering AutoML (Automated Machine Learning) for creating trading algorithms without the need for deep technical knowledge or coding skills.
By integrating real-world case studies, practical examples, and cutting-edge AutoML techniques, this book shows how traders can harness the power of automation and artificial intelligence to build, optimize, and scale sophisticated trading models that adapt to different market conditions and asset classes. Whether you're dealing with stocks, bonds, cryptocurrencies, or multi-asset portfolios, "The AutoML Edge" provides the tools and strategies to succeed.


Key Content Highlights

  1. Introduction to AutoML in Trading
    Understand how AutoML simplifies the trading model development process, including automatic data preprocessing, model selection, and hyperparameter tuning. Learn the basics of AutoML platforms like H2O.ai, Google Cloud AutoML, and DataRobot.
  2. Developing Trading Algorithms without Coding
    Learn how to create high-performance trading models without needing to write complex code. AutoML automates the technical side, enabling you to focus on strategy and performance.
  3. Time-Series Forecasting and Market Prediction
    Delve into the challenges of working with time-series data such as stock prices and learn how to leverage AutoML for precise market predictions.
  4. Multi-Asset Portfolio Management
    Explore how to build, optimize, and manage multi-asset portfolios using AutoML. Get insights into asset diversification, risk management, and portfolio optimization strategies across stocks, bonds, and cryptocurrencies.
  5. Risk Management with AutoML
    Discover how to incorporate sophisticated risk metrics like Sharpe Ratio, Maximum Drawdown, and volatility-based stop-loss strategies directly into your AutoML models.
  6. Scaling AutoML for High-Frequency Trading (HFT)
    Learn how to deploy AutoML in high-frequency trading environments, optimizing for speed, scale, and execution efficiency across large datasets.
  7. Real-World Case Studies
    Study real-world examples of professional traders, hedge funds, and retail traders who have successfully implemented AutoML in their strategies, achieving consistent profits.


Who Should Read This Book?
Target Audience:
  • Retail Traders: Individuals looking to elevate their trading strategies by incorporating advanced AI tools without needing to learn complex coding.
  • Quantitative Analysts & Financial Professionals: Professionals seeking to streamline the model-building process using AutoML to reduce manual intervention and maximize trading efficiency.
  • Algorithmic Trading Enthusiasts: Traders interested in automating trading strategies and incorporating cutting-edge technology into their processes.
  • Data Scientists & AI/ML Enthusiasts: Those curious about applying machine learning and automation to financial markets, with a specific focus on real-world trading applications.
  • Investors in Stocks, Bonds, Cryptocurrencies, and Multi-Asset Portfolios: Investors aiming to diversify their portfolios and optimize risk-adjusted returns using the latest advances in AI.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Détails bibliographiques

Titre : The AutoML Edge: Creating High-Performance ...
Éditeur : Independently published
Date d'édition : 2024
Reliure : Couverture souple
Etat : New

Meilleurs résultats de recherche sur AbeBooks

Image d'archives

Lomovasky, Dr Israel Carlos
Edité par Independently published, 2024
ISBN 13 : 9798340424679
Neuf Couverture souple
impression à la demande

Vendeur : California Books, Miami, FL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Print on Demand. N° de réf. du vendeur I-9798340424679

Contacter le vendeur

Acheter neuf

EUR 20,22
Livraison gratuite
Expédition nationale : Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier