Automatic Tuning of Data-Intensive Analytical Workloads

Herodotou, Herodotos

ISBN 10: 3330001402 ISBN 13: 9783330001404
Edité par LAP LAMBERT Academic Publishing, 2016
Neuf(s) Paperback

Vendeur Revaluation Books, Exeter, Royaume-Uni Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Vendeur AbeBooks depuis 6 janvier 2003


A propos de cet article

Description :

328 pages. 8.66x5.91x0.74 inches. In Stock. N° de réf. du vendeur 3330001402

Signaler cet article

Synopsis :

Modern industrial, government, and academic organizations are collecting massive amounts of data at an unprecedented scale and pace. The ability to perform timely and cost-effective analytical processing of such large datasets in order to extract deep insights is now a key ingredient for success. Existing database systems are adapting to the new status quo while large-scale dataflow systems like MapReduce are becoming popular for executing analytical workloads on Big Data. In order to ensure good and robust performance automatically on such systems, a novel dynamic optimization approach has been developed that works across different tuning scenarios and systems. The solution is based on (i) collecting monitoring information in order to learn the run-time behavior of workloads, (ii) deploying appropriate models to predict the impact of hypothetical tuning choices on workload behavior, and (iii) using efficient search strategies to find tuning choices that give good workload performance. The dynamic nature enables this solution to overcome the new challenges posed by Big Data, and also makes it applicable to both MapReduce and Database systems.

Présentation de l'éditeur: Modern industrial, government, and academic organizations are collecting massive amounts of data at an unprecedented scale and pace. The ability to perform timely and cost-effective analytical processing of such large datasets in order to extract deep insights is now a key ingredient for success. Existing database systems are adapting to the new status quo while large-scale dataflow systems like MapReduce are becoming popular for executing analytical workloads on Big Data. In order to ensure good and robust performance automatically on such systems, a novel dynamic optimization approach has been developed that works across different tuning scenarios and systems. The solution is based on (i) collecting monitoring information in order to learn the run-time behavior of workloads, (ii) deploying appropriate models to predict the impact of hypothetical tuning choices on workload behavior, and (iii) using efficient search strategies to find tuning choices that give good workload performance. The dynamic nature enables this solution to overcome the new challenges posed by Big Data, and also makes it applicable to both MapReduce and Database systems.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Détails bibliographiques

Titre : Automatic Tuning of Data-Intensive ...
Éditeur : LAP LAMBERT Academic Publishing
Date d'édition : 2016
Reliure : Paperback
Etat : Brand New

Meilleurs résultats de recherche sur AbeBooks

Image fournie par le vendeur

Herodotos Herodotou
ISBN 10 : 3330001402 ISBN 13 : 9783330001404
Neuf Couverture souple
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Herodotou HerodotosDr. Herodotos Herodotou is a tenure-track Lecturer at the Cyprus University of Technology. He received his Ph.D. in Computer Science from Duke University in 2012. His research interests are in large-scale Data Proc. N° de réf. du vendeur 158246795

Contacter le vendeur

Acheter neuf

EUR 52,15
EUR 48,99 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Herodotos Herodotou
ISBN 10 : 3330001402 ISBN 13 : 9783330001404
Neuf Taschenbuch
impression à la demande

Vendeur : preigu, Osnabrück, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Automatic Tuning of Data-Intensive Analytical Workloads | Herodotos Herodotou | Taschenbuch | 328 S. | Englisch | 2016 | LAP LAMBERT Academic Publishing | EAN 9783330001404 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu Print on Demand. N° de réf. du vendeur 107970237

Contacter le vendeur

Acheter neuf

EUR 54,85
EUR 70 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 5 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Herodotos Herodotou
ISBN 10 : 3330001402 ISBN 13 : 9783330001404
Neuf Taschenbuch

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Neuware -Modern industrial, government, and academic organizations are collecting massive amounts of data at an unprecedented scale and pace. The ability to perform timely and cost-effective analytical processing of such large datasets in order to extract deep insights is now a key ingredient for success. Existing database systems are adapting to the new status quo while large-scale dataflow systems like MapReduce are becoming popular for executing analytical workloads on Big Data. In order to ensure good and robust performance automatically on such systems, a novel dynamic optimization approach has been developed that works across different tuning scenarios and systems. The solution is based on (i) collecting monitoring information in order to learn the run-time behavior of workloads, (ii) deploying appropriate models to predict the impact of hypothetical tuning choices on workload behavior, and (iii) using efficient search strategies to find tuning choices that give good workload performance. The dynamic nature enables this solution to overcome the new challenges posed by Big Data, and also makes it applicable to both MapReduce and Database systems.Books on Demand GmbH, Überseering 33, 22297 Hamburg 328 pp. Englisch. N° de réf. du vendeur 9783330001404

Contacter le vendeur

Acheter neuf

EUR 63,90
EUR 60 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Herodotos Herodotou
ISBN 10 : 3330001402 ISBN 13 : 9783330001404
Neuf Taschenbuch
impression à la demande

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Modern industrial, government, and academic organizations are collecting massive amounts of data at an unprecedented scale and pace. The ability to perform timely and cost-effective analytical processing of such large datasets in order to extract deep insights is now a key ingredient for success. Existing database systems are adapting to the new status quo while large-scale dataflow systems like MapReduce are becoming popular for executing analytical workloads on Big Data. In order to ensure good and robust performance automatically on such systems, a novel dynamic optimization approach has been developed that works across different tuning scenarios and systems. The solution is based on (i) collecting monitoring information in order to learn the run-time behavior of workloads, (ii) deploying appropriate models to predict the impact of hypothetical tuning choices on workload behavior, and (iii) using efficient search strategies to find tuning choices that give good workload performance. The dynamic nature enables this solution to overcome the new challenges posed by Big Data, and also makes it applicable to both MapReduce and Database systems. N° de réf. du vendeur 9783330001404

Contacter le vendeur

Acheter neuf

EUR 63,90
EUR 62,53 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Herodotos Herodotou
ISBN 10 : 3330001402 ISBN 13 : 9783330001404
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Modern industrial, government, and academic organizations are collecting massive amounts of data at an unprecedented scale and pace. The ability to perform timely and cost-effective analytical processing of such large datasets in order to extract deep insights is now a key ingredient for success. Existing database systems are adapting to the new status quo while large-scale dataflow systems like MapReduce are becoming popular for executing analytical workloads on Big Data. In order to ensure good and robust performance automatically on such systems, a novel dynamic optimization approach has been developed that works across different tuning scenarios and systems. The solution is based on (i) collecting monitoring information in order to learn the run-time behavior of workloads, (ii) deploying appropriate models to predict the impact of hypothetical tuning choices on workload behavior, and (iii) using efficient search strategies to find tuning choices that give good workload performance. The dynamic nature enables this solution to overcome the new challenges posed by Big Data, and also makes it applicable to both MapReduce and Database systems. 328 pp. Englisch. N° de réf. du vendeur 9783330001404

Contacter le vendeur

Acheter neuf

EUR 63,90
EUR 23 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Herodotou, Herodotos
ISBN 10 : 3330001402 ISBN 13 : 9783330001404
Neuf Couverture souple

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 26394745952

Contacter le vendeur

Acheter neuf

EUR 99,45
EUR 3,40 shipping
Expédition nationale : Etats-Unis

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Herodotou, Herodotos
ISBN 10 : 3330001402 ISBN 13 : 9783330001404
Neuf Couverture souple
impression à la demande

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Print on Demand. N° de réf. du vendeur 401663935

Contacter le vendeur

Acheter neuf

EUR 104,03
EUR 7,45 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Herodotou, Herodotos
ISBN 10 : 3330001402 ISBN 13 : 9783330001404
Neuf Couverture souple
impression à la demande

Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. PRINT ON DEMAND. N° de réf. du vendeur 18394745962

Contacter le vendeur

Acheter neuf

EUR 106,34
EUR 9,95 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Herodotou, Herodotos
ISBN 10 : 3330001402 ISBN 13 : 9783330001404
Neuf Paperback

Vendeur : Revaluation Books, Exeter, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : Brand New. 328 pages. 8.66x5.91x0.74 inches. In Stock. N° de réf. du vendeur __3330001402

Contacter le vendeur

Acheter neuf

EUR 123,20
EUR 14,33 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier