Vendeur
Kennys Bookstore, Olney, MD, Etats-Unis
Évaluation du vendeur 4 sur 5 étoiles
Vendeur AbeBooks depuis 9 octobre 2009
2021. 2nd Edition. Hardcover. . . . . . Books ship from the US and Ireland. N° de réf. du vendeur V9780367366513
Bayesian Networks: With Examples in R, Second Edition introduces Bayesian networks using a hands-on approach. Simple yet meaningful examples illustrate each step of the modelling process and discuss side by side the underlying theory and its application using R code. The examples start from the simplest notions and gradually increase in complexity. In particular, this new edition contains significant new material on topics from modern machine-learning practice: dynamic networks, networks with heterogeneous variables, and model validation.
The first three chapters explain the whole process of Bayesian network modelling, from structure learning to parameter learning to inference. These chapters cover discrete, Gaussian, and conditional Gaussian Bayesian networks. The following two chapters delve into dynamic networks (to model temporal data) and into networks including arbitrary random variables (using Stan). The book then gives a concise but rigorous treatment of the fundamentals of Bayesian networks and offers an introduction to causal Bayesian networks. It also presents an overview of R packages and other software implementing Bayesian networks. The final chapter evaluates two real-world examples: a landmark causal protein-signalling network published in Science and a probabilistic graphical model for predicting the composition of different body parts.
Covering theoretical and practical aspects of Bayesian networks, this book provides you with an introductory overview of the field. It gives you a clear, practical understanding of the key points behind this modelling approach and, at the same time, it makes you familiar with the most relevant packages used to implement real-world analyses in R. The examples covered in the book span several application fields, data-driven models and expert systems, probabilistic and causal perspectives, thus giving you a starting point to work in a variety of scenarios.
Online supplementary materials include the data sets and the code used in the book, which will all be made available from https: //www.bnlearn.com/book-crc-2ed/
À propos de l?auteur:
Marco Scutari is a Senior Lecturer at Istituto Dalle Molle di Studisull'Intelligenza Artificiale (IDSIA), Switzerland. He has held positions in Statistics, Statistical Genetics and Machine Learning in the UK and Switzerland since completing his Ph.D. in Statistics in 2011. His research focuses on the theory of Bayesian networks and their applications to biological and clinical data, as well as statistical computing and software engineering.
Jean-Baptiste Denis was formerly appointed as a statistician and modeller at the "Mathematics and Applied Informatics from Genome to Environment" unit of the French National Research Institute for Agriculture, Food and Environment. His main research interests were the modelling of two-way tables and Bayesian approaches, especially applied to genotype-by-environment interactions and microbiological food safety.
Titre : Bayesian Networks: With Examples in R
Éditeur : Taylor & Francis Ltd
Date d'édition : 2021
Reliure : Couverture rigide
Etat : New
Edition : 2ème Édition
Vendeur : Textbooks_Source, Columbia, MO, Etats-Unis
hardcover. Etat : New. 2nd Edition. Ships in a BOX from Central Missouri! UPS shipping for most packages, (Priority Mail for AK/HI/APO/PO Boxes). N° de réf. du vendeur 006127186N
Quantité disponible : 8 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 42849387-n
Quantité disponible : 6 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Hardback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. N° de réf. du vendeur C9780367366513
Quantité disponible : 5 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Marco Scutari is a Senior Lecturer at Istituto Dalle Molle di Studisull Intelligenza Artificiale (IDSIA), Switzerland. He has held positions in Statistics, Statistical Genetics and Machine Learning in the UK and Switzerland since complet. N° de réf. du vendeur 594576709
Quantité disponible : Plus de 20 disponibles
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Feb2215580148233
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 42849387
Quantité disponible : 6 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 42849387-n
Quantité disponible : 6 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Hardback. Etat : New. New copy - Usually dispatched within 4 working days. 185. N° de réf. du vendeur B9780367366513
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 42849387
Quantité disponible : 6 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26384657128
Quantité disponible : 4 disponible(s)