Collaborative Filtering

Majumdar, Angshul

ISBN 10: 103284082X ISBN 13: 9781032840826
Edité par CRC Press, 2024
Neuf(s) hardcover

Vendeur Mispah books, Redhill, SURRE, Royaume-Uni Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Vendeur AbeBooks depuis 15 avril 2021


A propos de cet article

Description :

New. N° de réf. du vendeur ERICA829103284082X6

Signaler cet article

Synopsis :

This book dives into the inner workings of recommender systems, those ubiquitous technologies that shape our online experiences. From Netflix show suggestions to personalized product recommendations on Amazon or the endless stream of curated YouTube videos, these systems power the choices we see every day.

À propos de l?auteur:

Angshul Majumdar is currently a professor at TCG CREST, Kolkata. Prior to that he was a professor at Indraprastha Institute of Information Technology, Delhi, India. He has been associated with the institute since 2012. Angshul did his Master's (2009) and PhD (2012) in electrical and computer engineering from the University of British Columbia, Vancouver, Canada.

Angshul's research interests lie in signal processing and machine learning with applications in smart grids and bioinformatics. Angshul has co-authored over 200 articles in journals and top tier conferences. He has written two books and co-edited two more and holds 7 US patents. He is an associate editor for IEEE Open Journal for Signal Processing and Elsevier Neurocomputing. In the past, he has been an associate editor for IEEE Transactions on Circuits and Systems for Video Technology.

Angshul is currently the director of student services at IEEE Signal Processing Society. Prior to that he was the chair for the education committee in the IEEE SPS membership board (2019). Angshul has also served as the chair for the chapter's committee in the IEEE SPS membership board (2016-18). He had been the founding chair of IEEE SPS Delhi Chapter (2015-18). Angshul has been the organizing chair of two IEEE SPS Winter Schools in 2014 and 2017. He has served as the finance chair of IEEE ISBA 2017, the flagship conference of IEEE Biometrics Council.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Détails bibliographiques

Titre : Collaborative Filtering
Éditeur : CRC Press
Date d'édition : 2024
Reliure : hardcover
Etat : New
Type de livre : book

Meilleurs résultats de recherche sur AbeBooks

Image d'archives

Angshul Majumdar
Edité par Taylor & Francis Ltd, London, 2024
ISBN 10 : 103284082X ISBN 13 : 9781032840826
Neuf Couverture rigide

Vendeur : CitiRetail, Stevenage, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : new. Hardcover. This book dives into the inner workings of recommender systems, those ubiquitous technologies that shape our online experiences. From Netflix show suggestions to personalized product recommendations on Amazon or the endless stream of curated YouTube videos, these systems power the choices we see every day.Collaborative filtering reigns supreme as the dominant approach behind recommender systems. This book offers a comprehensive exploration of this topic, starting with memory-based techniques. These methods, known for their ease of understanding and implementation, provide a solid foundation for understanding collaborative filtering. As you progress, youll delve into latent factor models, the abstract and mathematical engines driving modern recommender systems.The journey continues with exploring the concepts of metadata and diversity. Youll discover how metadata, the additional information gathered by the system, can be harnessed to refine recommendations. Additionally, the book delves into techniques for promoting diversity, ensuring a well-balanced selection of recommendations. Finally, the book concludes with a discussion of cutting-edge deep learning models used in recommender systems.This book caters to a dual audience. First, it serves as a primer for practicing IT professionals or data scientists eager to explore the realm of recommender systems. The book assumes a basic understanding of linear algebra and optimization but requires no prior knowledge of machine learning or programming. This makes it an accessible read for those seeking to enter this exciting field. Second, the book can be used as a textbook for a graduate-level course. To facilitate this, the final chapter provides instructors with a potential course plan.Key features: This is the only book covering 25 years of research on this topic starting from late 90s to the current year. This book is accessible to anyone with a basic knowledge of linear algebra, unlike other volumes that require knowledge of advanced data analytics. It covers a wider range of topics than other books. Most others are research oriented and delves deep into a narrow area. This is the only book written to be a textbook on collaborative filtering and recommender systems. The book emphasizes on algorithms and not implementation. This makes it agnostic to programming languages. The reader is free to use whatever they are comfortable in, such as Python, R, Matlab, Java, etc. This book dives into the inner workings of recommender systems, those ubiquitous technologies that shape our online experiences. From Netflix show suggestions to personalized product recommendations on Amazon or the endless stream of curated YouTube videos, these systems power the choices we see every day. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9781032840826

Contacter le vendeur

Acheter neuf

EUR 168,38
Frais de port : EUR 42,01
De Royaume-Uni vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Angshul Majumdar
Edité par Taylor & Francis Ltd, London, 2024
ISBN 10 : 103284082X ISBN 13 : 9781032840826
Neuf Couverture rigide
impression à la demande

Vendeur : AussieBookSeller, Truganina, VIC, Australie

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : new. Hardcover. This book dives into the inner workings of recommender systems, those ubiquitous technologies that shape our online experiences. From Netflix show suggestions to personalized product recommendations on Amazon or the endless stream of curated YouTube videos, these systems power the choices we see every day.Collaborative filtering reigns supreme as the dominant approach behind recommender systems. This book offers a comprehensive exploration of this topic, starting with memory-based techniques. These methods, known for their ease of understanding and implementation, provide a solid foundation for understanding collaborative filtering. As you progress, youll delve into latent factor models, the abstract and mathematical engines driving modern recommender systems.The journey continues with exploring the concepts of metadata and diversity. Youll discover how metadata, the additional information gathered by the system, can be harnessed to refine recommendations. Additionally, the book delves into techniques for promoting diversity, ensuring a well-balanced selection of recommendations. Finally, the book concludes with a discussion of cutting-edge deep learning models used in recommender systems.This book caters to a dual audience. First, it serves as a primer for practicing IT professionals or data scientists eager to explore the realm of recommender systems. The book assumes a basic understanding of linear algebra and optimization but requires no prior knowledge of machine learning or programming. This makes it an accessible read for those seeking to enter this exciting field. Second, the book can be used as a textbook for a graduate-level course. To facilitate this, the final chapter provides instructors with a potential course plan.Key features: This is the only book covering 25 years of research on this topic starting from late 90s to the current year. This book is accessible to anyone with a basic knowledge of linear algebra, unlike other volumes that require knowledge of advanced data analytics. It covers a wider range of topics than other books. Most others are research oriented and delves deep into a narrow area. This is the only book written to be a textbook on collaborative filtering and recommender systems. The book emphasizes on algorithms and not implementation. This makes it agnostic to programming languages. The reader is free to use whatever they are comfortable in, such as Python, R, Matlab, Java, etc. This book dives into the inner workings of recommender systems, those ubiquitous technologies that shape our online experiences. From Netflix show suggestions to personalized product recommendations on Amazon or the endless stream of curated YouTube videos, these systems power the choices we see every day. This item is printed on demand. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. N° de réf. du vendeur 9781032840826

Contacter le vendeur

Acheter neuf

EUR 171,31
Frais de port : EUR 32,18
De Australie vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Angshul Majumdar
Edité par Taylor & Francis Ltd, London, 2024
ISBN 10 : 103284082X ISBN 13 : 9781032840826
Neuf Couverture rigide

Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : new. Hardcover. This book dives into the inner workings of recommender systems, those ubiquitous technologies that shape our online experiences. From Netflix show suggestions to personalized product recommendations on Amazon or the endless stream of curated YouTube videos, these systems power the choices we see every day.Collaborative filtering reigns supreme as the dominant approach behind recommender systems. This book offers a comprehensive exploration of this topic, starting with memory-based techniques. These methods, known for their ease of understanding and implementation, provide a solid foundation for understanding collaborative filtering. As you progress, youll delve into latent factor models, the abstract and mathematical engines driving modern recommender systems.The journey continues with exploring the concepts of metadata and diversity. Youll discover how metadata, the additional information gathered by the system, can be harnessed to refine recommendations. Additionally, the book delves into techniques for promoting diversity, ensuring a well-balanced selection of recommendations. Finally, the book concludes with a discussion of cutting-edge deep learning models used in recommender systems.This book caters to a dual audience. First, it serves as a primer for practicing IT professionals or data scientists eager to explore the realm of recommender systems. The book assumes a basic understanding of linear algebra and optimization but requires no prior knowledge of machine learning or programming. This makes it an accessible read for those seeking to enter this exciting field. Second, the book can be used as a textbook for a graduate-level course. To facilitate this, the final chapter provides instructors with a potential course plan.Key features: This is the only book covering 25 years of research on this topic starting from late 90s to the current year. This book is accessible to anyone with a basic knowledge of linear algebra, unlike other volumes that require knowledge of advanced data analytics. It covers a wider range of topics than other books. Most others are research oriented and delves deep into a narrow area. This is the only book written to be a textbook on collaborative filtering and recommender systems. The book emphasizes on algorithms and not implementation. This makes it agnostic to programming languages. The reader is free to use whatever they are comfortable in, such as Python, R, Matlab, Java, etc. This book dives into the inner workings of recommender systems, those ubiquitous technologies that shape our online experiences. From Netflix show suggestions to personalized product recommendations on Amazon or the endless stream of curated YouTube videos, these systems power the choices we see every day. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9781032840826

Contacter le vendeur

Acheter neuf

EUR 178,43
Frais de port : Gratuit
Vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Angshul Majumdar (Indraprastha Institute of Information Technology, Delhi, India)
Edité par CRC Press, 2024
ISBN 10 : 103284082X ISBN 13 : 9781032840826
Neuf Couverture souple

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 1539625683

Contacter le vendeur

Acheter neuf

EUR 189,92
Frais de port : EUR 48,99
De Allemagne vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Majumdar, Angshul
Edité par CRC Press, 2024
ISBN 10 : 103284082X ISBN 13 : 9781032840826
Neuf Couverture rigide

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 47618918-n

Contacter le vendeur

Acheter neuf

EUR 206,56
Frais de port : EUR 2,30
Vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Majumdar, Angshul
Edité par CRC Press, 2024
ISBN 10 : 103284082X ISBN 13 : 9781032840826
Neuf Couverture rigide

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 47618918-n

Contacter le vendeur

Acheter neuf

EUR 208,60
Frais de port : EUR 17,03
De Royaume-Uni vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Majumdar Angshul
Edité par H N H International Limited, 2024
ISBN 10 : 103284082X ISBN 13 : 9781032840826
Neuf Couverture rigide

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. pp. 142. N° de réf. du vendeur 394739633

Contacter le vendeur

Acheter neuf

EUR 221,91
Frais de port : EUR 7,38
De Royaume-Uni vers Etats-Unis

Quantité disponible : 3 disponible(s)

Ajouter au panier

Image d'archives

Angshul Majumdar
Edité par H N H International Limited, 2024
ISBN 10 : 103284082X ISBN 13 : 9781032840826
Neuf Couverture rigide

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. pp. 142 1st edition NO-PA16APR2015-KAP. N° de réf. du vendeur 26401637486

Contacter le vendeur

Acheter neuf

EUR 228,43
Frais de port : EUR 3,47
Vers Etats-Unis

Quantité disponible : 3 disponible(s)

Ajouter au panier

Image d'archives

Majumdar, Angshul
Edité par CRC Press, 2024
ISBN 10 : 103284082X ISBN 13 : 9781032840826
Neuf Couverture rigide

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9781032840826_new

Contacter le vendeur

Acheter neuf

EUR 237,31
Frais de port : EUR 13,60
De Royaume-Uni vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Angshul Majumdar
Edité par CRC Press, 2024
ISBN 10 : 103284082X ISBN 13 : 9781032840826
Neuf Couverture rigide
impression à la demande

Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

HRD. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L1-9781032840826

Contacter le vendeur

Acheter neuf

EUR 239,12
Frais de port : EUR 4,72
De Royaume-Uni vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

There are 7 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre