Vendeur
Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
Évaluation du vendeur 5 sur 5 étoiles
Vendeur AbeBooks depuis 27 février 2001
N° de réf. du vendeur V9781470426460
The curvature discussed in this paper is a far reaching generalization of the Riemannian sectional curvature. The authors give a unified definition of curvature which applies to a wide class of geometric structures whose geodesics arise from optimal control problems, including Riemannian, sub-Riemannian, Finsler and sub-Finsler spaces. Special attention is paid to the sub-Riemannian (or Carnot-Caratheodory) metric spaces. The authors' construction of curvature is direct and naive, and similar to the original approach of Riemann. In particular, they extract geometric invariants from the asymptotics of the cost of optimal control problems. Surprisingly, it works in a very general setting and, in particular, for all sub-Riemannian spaces.
À propos de l?auteur:
A. Agrachev, SISSA, Trieste, Italy, and Sobolev Institute of Mathematics, Novosibirsk, Russia.
D. Barilari, Ecole Polytechnique, Paris, France, and INRIA GECO Saclay-Ile-de-France, Paris, France.
L. Rizzi, SISSA, Trieste, Italy.
Titre : Curvature A Variational Approach
Éditeur : Amer Mathematical Society
Date d'édition : 2018
Reliure : Couverture souple
Etat : New
Vendeur : Antiquariat Bookfarm, Löbnitz, Allemagne
Softcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-03297 9781470426460 Sprache: Englisch Gewicht in Gramm: 550. N° de réf. du vendeur 2489203
Quantité disponible : 1 disponible(s)