DATA MINING FOR BUSINESS ANALYTICS: CONCEPTS, TECHNIQUES AND APPLICATIONS IN PYTHON

Shmueli, Galit

ISBN 10: 1119549841 ISBN 13: 9781119549840
Edité par Wiley, US, 2020
Ancien(s) ou d'occasion Hardcover

Vendeur Atlanta Vintage Books, Atlanta, GA, Etats-Unis Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Honoris Librarius
Membre AbeBooks depuis 1996


A propos de cet article

Description :

Glossy pictorial boards. Pages are clean and unmarked. Boards are clean and bright. Text block is clean. Binding is tight and square. N° de réf. du vendeur 55283

Signaler cet article

Synopsis :

Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration

Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities.

This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes:

  • A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process
  • A new section on ethical issues in data mining
  • Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students
  • More than a dozen case studies demonstrating applications for the data mining techniques described
  • End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented
  • A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions

Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology.

"This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject."

--Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R

À propos de l?auteur:

GALIT SHMUELI, PHD, is Distinguished Professor at National Tsing Hua University's Institute of Service Science. She has designed and instructed data mining courses since 2004 at University of Maryland, Statistics.com, Indian School of Business, and National Tsing Hua University, Taiwan. Professor Shmueli is known for her research and teaching in business analytics, with a focus on statistical and data mining methods in information systems and healthcare. She has authored over 100 publications including books.

PETER C. BRUCE is President and Founder of the Institute for Statistics Education at Statistics.com. He has written multiple journal articles and is the developer of Resampling Stats software. He is the author of Introductory Statistics and Analytics: A Resampling Perspective (Wiley) and co-author of Practical Statistics for Data Scientists: 50 Essential Concepts (O'Reilly).

PETER GEDECK, PHD, is a Senior Data Scientist at Collaborative Drug Discovery, where he helps develop cloud-based software to manage the huge amount of data involved in the drug discovery process. He also teaches data mining at Statistics.com.

NITIN R. PATEL, PhD, is cofounder and board member of Cytel Inc., based in Cambridge, Massachusetts. A Fellow of the American Statistical Association, Dr. Patel has also served as a Visiting Professor at the Massachusetts Institute of Technology and at Harvard University. He is a Fellow of the Computer Society of India and was a professor at the Indian Institute of Management, Ahmedabad, for 15 years.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Détails bibliographiques

Titre : DATA MINING FOR BUSINESS ANALYTICS: CONCEPTS...
Éditeur : Wiley, US
Date d'édition : 2020
Reliure : Hardcover
Etat : Near Fine

Meilleurs résultats de recherche sur AbeBooks

Image d'archives

Shmueli, Galit/ Bruce, Peter C./ Gedeck, Peter/ Patel, Nitin R.
Edité par John Wiley & Sons Inc, 2019
ISBN 10 : 1119549841 ISBN 13 : 9781119549840
Neuf Couverture rigide

Vendeur : Revaluation Books, Exeter, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : Brand New. 574 pages. 10.00x7.00x1.00 inches. In Stock. N° de réf. du vendeur zk1119549841

Contacter le vendeur

Acheter neuf

EUR 223,08
Expédition à EUR 17,32
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier