Ensemble Machine Learning Cookbook
Dipayan Sarkar
Vendu par PBShop.store US, Wood Dale, IL, Etats-Unis
Vendeur AbeBooks depuis 7 avril 2005
Neuf(s) - Couverture souple
Etat : Neuf
Quantité disponible : Plus de 20 disponibles
Ajouter au panierVendu par PBShop.store US, Wood Dale, IL, Etats-Unis
Vendeur AbeBooks depuis 7 avril 2005
Etat : Neuf
Quantité disponible : Plus de 20 disponibles
Ajouter au panierNew Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
N° de réf. du vendeur L0-9781789136609
Implement machine learning algorithms to build ensemble models using Keras, H2O, Scikit-Learn, Pandas and more
Ensemble modeling is an approach used to improve the performance of machine learning models. It combines two or more similar or dissimilar machine learning algorithms to deliver superior intellectual powers. This book will help you to implement popular machine learning algorithms to cover different paradigms of ensemble machine learning such as boosting, bagging, and stacking.
The Ensemble Machine Learning Cookbook will start by getting you acquainted with the basics of ensemble techniques and exploratory data analysis. You'll then learn to implement tasks related to statistical and machine learning algorithms to understand the ensemble of multiple heterogeneous algorithms. It will also ensure that you don't miss out on key topics, such as like resampling methods. As you progress, you'll get a better understanding of bagging, boosting, stacking, and working with the Random Forest algorithm using real-world examples. The book will highlight how these ensemble methods use multiple models to improve machine learning results, as compared to a single model. In the concluding chapters, you'll delve into advanced ensemble models using neural networks, natural language processing, and more. You'll also be able to implement models such as fraud detection, text categorization, and sentiment analysis.
By the end of this book, you'll be able to harness ensemble techniques and the working mechanisms of machine learning algorithms to build intelligent models using individual recipes.
This book is designed for data scientists, machine learning developers, and deep learning enthusiasts who want to delve into machine learning algorithms to build powerful ensemble models. Working knowledge of Python programming and basic statistics is a must to help you grasp the concepts in the book.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Visitez la page d’accueil du vendeur
Returns Policy
We ask all customers to contact us for authorisation should they wish to return their order. Orders returned without authorisation may not be credited.
If you wish to return, please contact us within 14 days of receiving your order to obtain authorisation.
Returns requested beyond this time will not be authorised.
Our team will provide full instructions on how to return your order and once received our returns department will process your refund.
Please note the cost to return any...
Books are shipped from our US or UK warehouses. Delivery estimates allow for delivery from either location.
Quantité commandée | 5 à 15 jours ouvrés | 5 à 15 jours ouvrés |
---|---|---|
Premier article | EUR 0.74 | EUR 0.74 |
Les délais de livraison sont fixés par les vendeurs et varient en fonction du transporteur et du lieu. Les commandes transitant par les douanes peuvent être retardées et les acheteurs sont responsables de tous les droits ou frais associés. Les vendeurs peuvent vous contacter au sujet de frais supplémentaires afin de couvrir toute augmentation des coûts d'expédition de vos articles.