Vendeur
Books Puddle, New York, NY, Etats-Unis
Évaluation du vendeur 4 sur 5 étoiles
Vendeur AbeBooks depuis 22 novembre 2018
pp. 100. N° de réf. du vendeur 26127717810
Network security is a serious global concern. The increasing prevalence of malware and incidents of attacks hinders the utilization of the Internet to its greatest benefit and incur significant economic losses. The traditional approaches in securing systems against threats are designing mechanisms that create a protective shield, almost always with vulnerabilities. This has created Intrusion Detection Systems to be developed that complement traditional approaches. However, with the advancement of computer technology, the behavior of intrusions has become complex that makes the work of security experts hard to analyze and detect intrusions. In order to address these challenges, data mining techniques have become a possible solution. However, the performance of data mining algorithms is affected when no optimized features are provided. This is because, complex relationships can be seen as well between the features and intrusion classes contributing to high computational costs in processing tasks, subsequently leads to delays in identifying intrusions. Feature selection is thus important in detecting intrusions by allowing the data mining system to focus on what is really important.
Titre : Feature Selection for Intrusion Detection ...
Éditeur : VDM Verlag Dr. Mueller Aktiengesellschaft & Co. KG
Date d'édition : 2014
Reliure : Couverture souple
Etat : New
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Kumar YogeshYogesh Kumar has done M Tech (CSE) from PIT (PTU Main campus), Kapurthala, India. Currently, he is an Assistant Professor at BGIET, Sangrur, India. His general research Interests are in the areas of Information Security a. N° de réf. du vendeur 5161588
Quantité disponible : Plus de 20 disponibles
Vendeur : preigu, Osnabrück, Allemagne
Taschenbuch. Etat : Neu. Feature Selection For Intrusion Detection Systems | Using data mining techniques | Yogesh Kumar (u. a.) | Taschenbuch | 100 S. | Englisch | 2014 | LAP LAMBERT Academic Publishing | EAN 9783659515101 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. N° de réf. du vendeur 105466695
Quantité disponible : 5 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Network security is a serious global concern. The increasing prevalence of malware and incidents of attacks hinders the utilization of the Internet to its greatest benefit and incur significant economic losses. The traditional approaches in securing systems against threats are designing mechanisms that create a protective shield, almost always with vulnerabilities. This has created Intrusion Detection Systems to be developed that complement traditional approaches. However, with the advancement of computer technology, the behavior of intrusions has become complex that makes the work of security experts hard to analyze and detect intrusions. In order to address these challenges, data mining techniques have become a possible solution. However, the performance of data mining algorithms is affected when no optimized features are provided. This is because, complex relationships can be seen as well between the features and intrusion classes contributing to high computational costs in processing tasks, subsequently leads to delays in identifying intrusions. Feature selection is thus important in detecting intrusions by allowing the data mining system to focus on what is really important. 100 pp. Englisch. N° de réf. du vendeur 9783659515101
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -Network security is a serious global concern. The increasing prevalence of malware and incidents of attacks hinders the utilization of the Internet to its greatest benefit and incur significant economic losses. The traditional approaches in securing systems against threats are designing mechanisms that create a protective shield, almost always with vulnerabilities. This has created Intrusion Detection Systems to be developed that complement traditional approaches. However, with the advancement of computer technology, the behavior of intrusions has become complex that makes the work of security experts hard to analyze and detect intrusions. In order to address these challenges, data mining techniques have become a possible solution. However, the performance of data mining algorithms is affected when no optimized features are provided. This is because, complex relationships can be seen as well between the features and intrusion classes contributing to high computational costs in processing tasks, subsequently leads to delays in identifying intrusions. Feature selection is thus important in detecting intrusions by allowing the data mining system to focus on what is really important.Books on Demand GmbH, Überseering 33, 22297 Hamburg 100 pp. Englisch. N° de réf. du vendeur 9783659515101
Quantité disponible : 1 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Network security is a serious global concern. The increasing prevalence of malware and incidents of attacks hinders the utilization of the Internet to its greatest benefit and incur significant economic losses. The traditional approaches in securing systems against threats are designing mechanisms that create a protective shield, almost always with vulnerabilities. This has created Intrusion Detection Systems to be developed that complement traditional approaches. However, with the advancement of computer technology, the behavior of intrusions has become complex that makes the work of security experts hard to analyze and detect intrusions. In order to address these challenges, data mining techniques have become a possible solution. However, the performance of data mining algorithms is affected when no optimized features are provided. This is because, complex relationships can be seen as well between the features and intrusion classes contributing to high computational costs in processing tasks, subsequently leads to delays in identifying intrusions. Feature selection is thus important in detecting intrusions by allowing the data mining system to focus on what is really important. N° de réf. du vendeur 9783659515101
Quantité disponible : 1 disponible(s)