Synopsis :
Perhaps nothing characterizes the inherent heterogeneity in embedded sys- tems than the ability to choose between hardware and software implementations of a given system function. Indeed, most embedded systems at their core repre- sent a careful division and design of hardware and software parts of the system To do this task effectively, models and methods are necessary functionality. to capture application behavior, needs and system implementation constraints. Formal modeling can be valuable in addressing these tasks. As with most engineering domains, co-design practice defines the state of the it seeks to add new capabilities in system conceptualization, mod- art, though eling, optimization and implementation. These advances -particularly those related to synthesis and verification tasks -direct1y depend upon formal under- standing of system behavior and performance measures. Current practice in system modeling relies upon exploiting high-level programming frameworks, such as SystemC, EstereI, to capture design at increasingly higher levels of ab- straction and attempts to reduce the system implementation task. While raising the abstraction levels for design and verification tasks, to be really useful, these approaches must also provide for reuse, adaptation of the existing intellectual property (IP) blocks.
Présentation de l'éditeur:
The gap between the size of microelectronic design/validation task and our ability to design these in a reasonable time is steadly increasing. We need tools and techniques to bridge this gap. Formal models and methods hold this promise by their focus on scalability, efficiency and design optimization. In additional, we need methodological innovations to bring formal techniques into practice. Exploiting the structure of the systems to decompose the problems into smaller ones, discovering the hierarchy and proper decomposition, abstraction, refinement, and other behavioral and structural properties of system are important for successful use of formal methods. Formal Methods and Models for System Design is organized as a series of articles written by industrial and academic experts who apply formal methods in hardware and software design, develop methodologies and tools, or develop theoretical formalisms. The emphasis of the book is on (i) formal frameworks for complex system modeling, such as system-on-chip, embedded software, component based systems, (ii) formal verification techniques, especially abstraction and refinement based methodologies, (iii) behavioral type theory for system integration, (iv) optimization techniques for executable system level models for efficient simulation, and execution, and (v)formal models for post-production configurability. Formal Methods and Models for System Design will provide readers with a sample of some of the recent developments in formal methods in system design. It can also be used as a graduate level text for a seminar based course.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.