Graph Data Mining | Algorithm, Security and Application

Qi Xuan (u. a.)

ISBN 10: 9811626111 ISBN 13: 9789811626111
Edité par Springer Singapore, 2022
Neuf(s) Taschenbuch

Vendeur preigu, Osnabrück, Allemagne Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Vendeur AbeBooks depuis 5 août 2024


A propos de cet article

Description :

Graph Data Mining | Algorithm, Security and Application | Qi Xuan (u. a.) | Taschenbuch | xvi | Englisch | 2022 | Springer Singapore | EAN 9789811626111 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. N° de réf. du vendeur 122034673

Signaler cet article

Synopsis :

Graph data is powerful, thanks to its ability to model arbitrary relationship between objects and is encountered in a range of real-world applications in fields such as bioinformatics, traffic network, scientific collaboration, world wide web and social networks. Graph data mining is used to discover useful information and knowledge from graph data. The complications of nodes, links and the semi-structure form present challenges in terms of the computation tasks, e.g., node classification, link prediction, and graph classification. In this context, various advanced techniques, including graph embedding and graph neural networks, have recently been proposed to improve the performance of graph data mining.

This book provides a state-of-the-art review of graph data mining methods. It addresses a current hot topic – the security of graph data mining – and proposes a series of detection methods to identify adversarial samples in graph data. In addition, it introduces readers to graph augmentation and subgraph networks to further enhance the models, i.e., improve their accuracy and robustness. Lastly, the book describes the applications of these advanced techniques in various scenarios, such as traffic networks, social and technical networks, and blockchains. 

À propos de l?auteur:

Qi Xuan is a Professor at the Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou, China. His current research interests include network science, graph data mining, cyberspace security, and deep learning. He has published more than 50 papers in leading journals and conferences, including IEEE TKDE, IEEE TIE, IEEE TNSE, ICSE, and FSE. He is the reviewer of the journals such like IEEE TKDE, IEEE TIE, IEEE TII, and IEEE TNSE.

Zhongyuan Ruan is a lecturer at the Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou, China. His current research interests include network science, such as epidemic and information spreading in complex networks, and traffic networks. He has published more than 20 papers in journals such as Physical Review Letters, Physical Review E, Chaos, Scientific Reports, and Physica A.

Yong Min is an Associate Professor at the Institute of Cyberspace Security, Zhejiang University ofTechnology, Hangzhou, China. His research interests include social network analysis, computational communication, and artificial intelligence algorithms. He was named an Excellent Young Teacher of Zhejiang University of Technology. He has hosted and participated in more than ten projects, including those by national and provincial natural science foundations. He has also published over 30 papers, including two in the leading journal Nature and Science, and he holds more than three patents.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Détails bibliographiques

Titre : Graph Data Mining | Algorithm, Security and ...
Éditeur : Springer Singapore
Date d'édition : 2022
Reliure : Taschenbuch
Etat : Neu

Meilleurs résultats de recherche sur AbeBooks

Image fournie par le vendeur

ISBN 10 : 9811626111 ISBN 13 : 9789811626111
Neuf Couverture souple
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Graph data is powerful, thanks to its ability to model arbitrary relationship between objects and is encountered in a range of real-world applications in fields such as bioinformatics, traffic network, scientific collaboration, world wide web and social . N° de réf. du vendeur 628808075

Contacter le vendeur

Acheter neuf

EUR 153,73
EUR 48,99 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Qi Xuan
ISBN 10 : 9811626111 ISBN 13 : 9789811626111
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Graph data is powerful, thanks to its ability to model arbitrary relationship between objects and is encountered in a range of real-world applications in fields such as bioinformatics, traffic network, scientific collaboration, world wide web and social networks. Graph data mining is used to discover useful information and knowledge from graph data. The complications of nodes, links and the semi-structure form present challenges in terms of the computation tasks, e.g., node classification, link prediction, and graph classification. In this context, various advanced techniques, including graph embedding and graph neural networks, have recently been proposed to improve the performance of graph data mining. This book provides a state-of-the-art review of graph data mining methods. It addresses a current hot topic - the security of graph data mining - and proposes a series of detection methods to identify adversarial samples in graph data. In addition, it introduces readers to graph augmentation and subgraph networks to further enhance the models, i.e., improve their accuracy and robustness. Lastly, the book describes the applications of these advanced techniques in various scenarios, such as traffic networks, social and technical networks, and blockchains. 260 pp. Englisch. N° de réf. du vendeur 9789811626111

Contacter le vendeur

Acheter neuf

EUR 181,89
EUR 23 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Qi Xuan
ISBN 10 : 9811626111 ISBN 13 : 9789811626111
Neuf Taschenbuch
impression à la demande

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -Graph data is powerful, thanks to its ability to model arbitrary relationship between objects and is encountered in a range of real-world applications in fields such as bioinformatics, traffic network, scientific collaboration, world wide web and social networks. Graph data mining is used to discover useful information and knowledge from graph data. The complications of nodes, links and the semi-structure form present challenges in terms of the computation tasks, e.g., node classification, link prediction, and graph classification. In this context, various advanced techniques, including graph embedding and graph neural networks, have recently been proposed to improve the performance of graph data mining.This book provides a state-of-the-art review of graph data mining methods. It addresses a current hot topic ¿ the security of graph data mining ¿ and proposes a series of detection methods to identify adversarial samples in graph data. In addition, it introduces readers to graph augmentation and subgraph networks to further enhance the models, i.e., improve their accuracy and robustness. Lastly, the book describes the applications of these advanced techniques in various scenarios, such as traffic networks, social and technical networks, and blockchains.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 260 pp. Englisch. N° de réf. du vendeur 9789811626111

Contacter le vendeur

Acheter neuf

EUR 181,89
EUR 60 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Edité par Springer, 2022
ISBN 10 : 9811626111 ISBN 13 : 9789811626111
Neuf Couverture souple

Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur ABLIING23Apr0412070091972

Contacter le vendeur

Acheter neuf

EUR 183,81
EUR 3,40 shipping
Expédition nationale : Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Qi Xuan
ISBN 10 : 9811626111 ISBN 13 : 9789811626111
Neuf Taschenbuch

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Graph data is powerful, thanks to its ability to model arbitrary relationship between objects and is encountered in a range of real-world applications in fields such as bioinformatics, traffic network, scientific collaboration, world wide web and social networks. Graph data mining is used to discover useful information and knowledge from graph data. The complications of nodes, links and the semi-structure form present challenges in terms of the computation tasks, e.g., node classification, link prediction, and graph classification. In this context, various advanced techniques, including graph embedding and graph neural networks, have recently been proposed to improve the performance of graph data mining. This book provides a state-of-the-art review of graph data mining methods. It addresses a current hot topic - the security of graph data mining - and proposes a series of detection methods to identify adversarial samples in graph data. In addition, it introduces readers to graph augmentation and subgraph networks to further enhance the models, i.e., improve their accuracy and robustness. Lastly, the book describes the applications of these advanced techniques in various scenarios, such as traffic networks, social and technical networks, and blockchains. N° de réf. du vendeur 9789811626111

Contacter le vendeur

Acheter neuf

EUR 186,49
EUR 62 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Edité par Springer, 2022
ISBN 10 : 9811626111 ISBN 13 : 9789811626111
Neuf Couverture souple

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. 1st ed. 2021 edition NO-PA16APR2015-KAP. N° de réf. du vendeur 26395176689

Contacter le vendeur

Acheter neuf

EUR 225,37
EUR 3,40 shipping
Expédition nationale : Etats-Unis

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Edité par Springer, 2022
ISBN 10 : 9811626111 ISBN 13 : 9789811626111
Neuf Couverture souple
impression à la demande

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Print on Demand. N° de réf. du vendeur 402281774

Contacter le vendeur

Acheter neuf

EUR 238,99
EUR 7,40 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Edité par Springer, 2022
ISBN 10 : 9811626111 ISBN 13 : 9789811626111
Neuf Couverture souple
impression à la demande

Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. PRINT ON DEMAND. N° de réf. du vendeur 18395176699

Contacter le vendeur

Acheter neuf

EUR 242,62
EUR 9,95 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 4 disponible(s)

Ajouter au panier