Vendeur
Revaluation Books, Exeter, Royaume-Uni
Évaluation du vendeur 5 sur 5 étoiles
Vendeur AbeBooks depuis 6 janvier 2003
201 pages. 9.00x6.00x1.00 inches. In Stock. This item is printed on demand. N° de réf. du vendeur __0691174822
Motivated by the theory of turbulence in fluids, the physicist and chemist Lars Onsager conjectured in 1949 that weak solutions to the incompressible Euler equations might fail to conserve energy if their spatial regularity was below 1/3-Hölder. In this book, Philip Isett uses the method of convex integration to achieve the best-known results regarding nonuniqueness of solutions and Onsager's conjecture. Focusing on the intuition behind the method, the ideas introduced now play a pivotal role in the ongoing study of weak solutions to fluid dynamics equations.
The construction itself-an intricate algorithm with hidden symmetries-mixes together transport equations, algebra, the method of nonstationary phase, underdetermined partial differential equations (PDEs), and specially designed high-frequency waves built using nonlinear phase functions. The powerful "Main Lemma"-used here to construct nonzero solutions with compact support in time and to prove nonuniqueness of solutions to the initial value problem-has been extended to a broad range of applications that are surveyed in the appendix. Appropriate for students and researchers studying nonlinear PDEs, this book aims to be as robust as possible and pinpoints the main difficulties that presently stand in the way of a full solution to Onsager's conjecture.À propos de l?auteur: Philip Isett is assistant professor of mathematics at the University of Texas, Austin.
Titre : Hölder Continuous Euler Flows in Three ...
Éditeur : Princeton Univ Pr
Date d'édition : 2017
Reliure : Hardcover
Etat : Brand New
Vendeur : Academybookshop, Long Island City, NY, Etats-Unis
Hardcover. Etat : New. N° de réf. du vendeur C-gj24-08803
Quantité disponible : 1 disponible(s)
Vendeur : Academybookshop, Long Island City, NY, Etats-Unis
Hardcover. Etat : New. N° de réf. du vendeur C-gj24-11642
Quantité disponible : 1 disponible(s)
Vendeur : Academybookshop, Long Island City, NY, Etats-Unis
Hardcover. Etat : New. N° de réf. du vendeur F-05768
Quantité disponible : 1 disponible(s)
Vendeur : BooksElleven, Three Oaks, MI, Etats-Unis
Hardcover. Etat : As New. Nice cover. Clean pages throughout. Binding excellent. N° de réf. du vendeur G120-HOLDER
Quantité disponible : 1 disponible(s)
Vendeur : Labyrinth Books, Princeton, NJ, Etats-Unis
Etat : New. N° de réf. du vendeur 208409
Quantité disponible : 3 disponible(s)
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
HRD. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur WP-9780691174822
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Gebunden. Etat : New. N° de réf. du vendeur 594886373
Quantité disponible : 1 disponible(s)
Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
Etat : New. Series: Annals of Mathematics Studies. Num Pages: 216 pages. BIC Classification: PB; PHU; PN. Category: (P) Professional & Vocational; (U) Tertiary Education (US: College). Dimension: 229 x 152 x 18. Weight in Grams: 428. . 2017. Hardcover. . . . . N° de réf. du vendeur V9780691174822
Quantité disponible : 1 disponible(s)
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
HRD. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur WP-9780691174822
Quantité disponible : 1 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. Neuware - Motivated by the theory of turbulence in fluids, the physicist and chemist Lars Onsager conjectured in 1949 that weak solutions to the incompressible Euler equations might fail to conserve energy if their spatial regularity was below 1/3-Hölder. In this book, Philip Isett uses the method of convex integration to achieve the best-known results regarding nonuniqueness of solutions and Onsager's conjecture. Focusing on the intuition behind the method, the ideas introduced now play a pivotal role in the ongoing study of weak solutions to fluid dynamics equations.The construction itself-an intricate algorithm with hidden symmetries-mixes together transport equations, algebra, the method of nonstationary phase, underdetermined partial differential equations (PDEs), and specially designed high-frequency waves built using nonlinear phase functions. The powerful 'Main Lemma'-used here to construct nonzero solutions with compact support in time and to prove nonuniqueness of solutions to the initial value problem-has been extended to a broad range of applications that are surveyed in the appendix. Appropriate for students and researchers studying nonlinear PDEs, this book aims to be as robust as possible and pinpoints the main difficulties that presently stand in the way of a full solution to Onsager's conjecture. N° de réf. du vendeur 9780691174822
Quantité disponible : 1 disponible(s)