Synopsis
As computers continue to remain essential tools for the pursuit of physics, medicine, economics, social sciences, and more, supercomputers are proving that they can further extend and greatly enhance as-of-yet undiscovered knowledge and solve the world's most complex problems. As these instruments continue to lead to groundbreaking discoveries and breakthroughs, it is imperative that research remains up to date with the latest findings and uses. The Handbook of Research on Methodologies and Applications of Supercomputing is a comprehensive and critical reference book that provides research on the latest advances of control flow and dataflow supercomputing and highlights selected emerging big data applications needing high acceleration and/or low power. Consequently, this book advocates the need for hybrid computing, where the control flow part represents the host architecture and dataflow part represents the acceleration architecture. These issues cover the initial eight chapters. The remaining eight chapters cover selected modern applications that are best implemented on a hybrid computer, in which the transactional parts (serial code) are implemented on the control flow part and the loops (parallel code) on the dataflow part. These final eight chapters cover two major application domains: scientific computing and computing for digital economy. This book offers applications in marketing, medicine, energy systems, and library science, among others, and is an essential source for scientists, programmers, engineers, practitioners, researchers, academicians, and students interested in the latest findings and advancements in supercomputing.
À propos des auteurs
Veljko Milutinović (1951) received his PhD from the University of Belgrade in Serbia, spent about a decade on various faculty positions in the USA (mostly at Purdue University and more recently at the University of Indiana in Bloomington), and was a co-designer of the DARPAs pioneering GaAs RISC microprocessor on 200MHz (about a decade before the first commercial effort on that same speed) and was a co-designer also of the related GaAs Systolic Array (with 4096 GaAs microprocessors). Later, for almost three decades, he taught and conducted research at the University of Belgrade in Serbia, for departments of EE, MATH, BA, and PHYS/CHEM. His research is mostly in data mining algorithms and dataflow computing, with the emphasis on mapping of data analytics algorithms onto fast energy efficient architectures. Most of his research was done in cooperation with industry (Intel, Fairchild, Honeywell, Maxeler, HP, IBM, NCR, RCA, etc.). For 20 of his edited books, publication forewords or other contributions were written by 20 different Nobel Laureates with whom he cooperated on his past industry sponsored projects. He published 40 books (mostly in the USA), he has over 100 papers in SCI journals (mostly in IEEE and ACM journals), and he presented invited talks at over 400 destinations worldwide. He has well over 1000 Thomson-Reuters WoS citations, well over 1000 Elsevier SCOPUS citations, and well over 5000 Google Scholar citations. His Google Scholar h index is equal to 40. He is a Life Fellow of the IEEE since 2003 and a Member of The Academy of Europe since 2011. He is a member of the Serbian National Academy of Engineering and a Foreign Member of the Montenegrin National Academy of Sciences and Arts.
Miloš Kotlar received his B.Sc. (2016) and M.Sc. (2017) degrees in Electrical and Computer Engineering from the University of Belgrade, School of Electrical Engineering, Serbia. He is a Ph.D. candidate at the School of Electrical Engineering, University of Belgrade. His general research interests include implementation of energy efficient tensor implementations using the dataflow paradigm (FPGA and ASIC accelerators) and meta learning approaches for anomaly detection tasks.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.