Vendeur
Books Puddle, New York, NY, Etats-Unis
Évaluation du vendeur 4 sur 5 étoiles
Vendeur AbeBooks depuis 22 novembre 2018
N° de réf. du vendeur 26402090666
In total, this Special Issue includes 11 papers. Firstly, Qi et al. conducted research on the large-scale non-uniform parallel solution of the two-dimensional Saint-Venant equations for flood behavior modeling. Zhang et al. proposed an efficient deep learning-based mineral identification method. Subsequently, Huang et al. proposed a named entity recognition method for geological news based on BERT model. Yang et al. proposed an automatic landslide identification method to solve the problem of the time-consuming nature and low efficiency of traditional landslide identification methods. Du et al. analyzed the potential of unsupervised machine learning methods for submarine landslide prediction. Wang et al. performed parallel computations on the inversion algorithm of the two-dimensional ZTEM. Xu et al. used the sliding window method and gray relational analysis to extract features from multi-source real-time monitoring data of landslides. Furthermore, Cao et al. proposed a new method called dual encoder transform (DualET) for the short-term prediction of photovoltaic power. Hao et al. conducted a series of parallel optimizations and large-scale parallel simulations on the high-resolution ocean model. Wang et al. proposed a time series prediction model for landslide displacements using mean-based low-rank autoregressive tensor completion. Finally, Yang et al. developed a measure of site-level gross primary productivity (GPP) using the GeoMAN model.
Titre : High Performance Computing and Artificial ...
Éditeur : Mdpi AG
Date d'édition : 2023
Reliure : Couverture rigide
Etat : New
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783036581804
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
HRD. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L1-9783036581804
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783036581804_new
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
HRD. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L1-9783036581804
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - In total, this Special Issue includes 11 papers. Firstly, Qi et al. conducted research on the large-scale non-uniform parallel solution of the two-dimensional Saint-Venant equations for flood behavior modeling. Zhang et al. proposed an efficient deep learning-based mineral identification method. Subsequently, Huang et al. proposed a named entity recognition method for geological news based on BERT model. Yang et al. proposed an automatic landslide identification method to solve the problem of the time-consuming nature and low efficiency of traditional landslide identification methods. Du et al. analyzed the potential of unsupervised machine learning methods for submarine landslide prediction. Wang et al. performed parallel computations on the inversion algorithm of the two-dimensional ZTEM. Xu et al. used the sliding window method and gray relational analysis to extract features from multi-source real-time monitoring data of landslides. Furthermore, Cao et al. proposed a new method called dual encoder transform (DualET) for the short-term prediction of photovoltaic power. Hao et al. conducted a series of parallel optimizations and large-scale parallel simulations on the high-resolution ocean model. Wang et al. proposed a time series prediction model for landslide displacements using mean-based low-rank autoregressive tensor completion. Finally, Yang et al. developed a measure of site-level gross primary productivity (GPP) using the GeoMAN model. N° de réf. du vendeur 9783036581804
Quantité disponible : 2 disponible(s)
Vendeur : preigu, Osnabrück, Allemagne
Buch. Etat : Neu. High Performance Computing and Artificial Intelligence for Geosciences | Buch | Englisch | 2023 | MDPI AG | EAN 9783036581804 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand. N° de réf. du vendeur 127288858
Quantité disponible : 5 disponible(s)