INFERENCIA CAUSAL Y DESCUBRIMIENTO EN PYTHON
MOLAK, ALEKSANDER
Vendu par Antártica, Madrid, M, Espagne
Vendeur AbeBooks depuis 15 novembre 2019
Neuf(s) - Couverture souple
Etat : Neuf
Quantité disponible : 1 disponible(s)
Ajouter au panierVendu par Antártica, Madrid, M, Espagne
Vendeur AbeBooks depuis 15 novembre 2019
Etat : Neuf
Quantité disponible : 1 disponible(s)
Ajouter au panierEn comparación con el aprendizaje automático tradicional y las estadísticas, los métodos causales presentan desafíos únicos. Aprender causalidad puede ser difícil, pero ofrece distintas ventajas que escapan a una mentalidad puramente estadística. Este libro ayuda a liberar todo el potencial de la causalidad.El libro comienza con las motivaciones básicas del pensamiento causal y una completa introducción a conceptos causales pearlianos, como los modelos causales estructurales, las intervenciones, los contrafactuales, etc. Cada concepto va acompañado de una explicación teórica y una serie de ejercicios prácticos con código Python. A continuación, entra de lleno en el mundo de la estimación del efecto causal, y avanza hacia los métodos de aprendizaje automático modernos.Paso a paso, descubrirás el ecosistema causal de Python y aprovecharás la potencia de los algoritmos más avanzados. Además, explorarás la mecánica de las huellas que dejan las causas y descubrirás las cuatro familias principales de métodos de descubrimiento causal. El capítulo final ofrece una amplia visión general del futuro de la IA causal, co.
N° de réf. du vendeur 1434609
En comparación con el aprendizaje automático tradicional y las estadísticas, los métodos causales presentan desafíos únicos. Aprender causalidad puede ser difícil, pero ofrece distintas ventajas que escapan a una mentalidad puramente estadística. Este libro ayuda a liberar todo el potencial de la causalidad.
El libro comienza con las motivaciones básicas del pensamiento causal y una completa introducción a conceptos causales pearlianos, como los modelos causales estructurales, las intervenciones, los contrafactuales, etc. Cada concepto va acompañado de una explicación teórica y una serie de ejercicios prácticos con código Python. A continuación, entra de lleno en el mundo de la estimación del efecto causal, y avanza hacia los métodos de aprendizaje automático modernos.
Paso a paso, descubrirás el ecosistema causal de Python y aprovecharás la potencia de los algoritmos más avanzados. Además, explorarás la mecánica de las huellas que dejan las causas y descubrirás las cuatro familias principales de métodos de descubrimiento causal. El capítulo final ofrece una amplia visión general del futuro de la IA causal, con un examen de retos y oportunidades y una exhaustiva lista de recursos para seguir aprendiendo cada vez más.
Entre otras cosas, este libro permite:
* Dominar los conceptos fundamentales de la inferencia causal.
* Liberar el potencial del proceso de inferencia causal en cuatro pasos de Python.
* Explorar avanzadas técnicas de modelado uplift o de elevación.
* Descubrir los secretos del descubrimiento causal moderno con Python.
* Utilizar la inferencia causal para producir impacto social y beneficios para la comunidad.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Visitez la page d’accueil du vendeur
Quantité commandée | 6 à 20 jours ouvrés | 6 à 20 jours ouvrés |
---|---|---|
Premier article | EUR 9.00 | EUR 9.00 |
Les délais de livraison sont fixés par les vendeurs et varient en fonction du transporteur et du lieu. Les commandes transitant par les douanes peuvent être retardées et les acheteurs sont responsables de tous les droits ou frais associés. Les vendeurs peuvent vous contacter au sujet de frais supplémentaires afin de couvrir toute augmentation des coûts d'expédition de vos articles.