Edition internationale

INTEGRAL TRANSFORMS IN SCIENCE AND ENGINEERING (PB 1979)

WOLF K B

ISBN 10: 1475708742 ISBN 13: 9781475708745
Edité par SPRINGER, 2013
Neuf(s) Couverture souple

Vendeur UK BOOKS STORE, London, LONDO, Royaume-Uni Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Vendeur AbeBooks depuis 11 mars 2024


A propos de cet article

Description :

Brand New! Fast Delivery This is an International Edition and ship within 24-48 hours. Deliver by FedEx and Dhl, & Aramex, UPS, & USPS and we do accept APO and PO BOX Addresses. Order can be delivered worldwide within 7-12 days and we do have flat rate for up to 2LB. Extra shipping charges will be requested if the Book weight is more than 5 LB. This Item May be shipped from India, United states & United Kingdom. Depending on your location and availability. N° de réf. du vendeur CBS 9781475708745

Signaler cet article

Synopsis :

Integral transforms are among the main mathematical methods for the solution of equations describing physical systems, because, quite generally, the coupling between the elements which constitute such a system-these can be the mass points in a finite spring lattice or the continuum of a diffusive or elastic medium-prevents a straightforward "single-particle" solution. By describing the same system in an appropriate reference frame, one can often bring about a mathematical uncoupling of the equations in such a way that the solution becomes that of noninteracting constituents. The "tilt" in the reference frame is a finite or integral transform, according to whether the system has a finite or infinite number of elements. The types of coupling which yield to the integral transform method include diffusive and elastic interactions in "classical" systems as well as the more common quantum-mechanical potentials. The purpose of this volume is to present an orderly exposition of the theory and some of the applications of the finite and integral transforms associated with the names of Fourier, Bessel, Laplace, Hankel, Gauss, Bargmann, and several others in the same vein. The volume is divided into four parts dealing, respectively, with finite, series, integral, and canonical transforms. They are intended to serve as independent units. The reader is assumed to have greater mathematical sophistication in the later parts, though.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Détails bibliographiques

Titre : INTEGRAL TRANSFORMS IN SCIENCE AND ...
Éditeur : SPRINGER
Date d'édition : 2013
Reliure : Couverture souple
Etat : New
Edition : Edition internationale

Meilleurs résultats de recherche sur AbeBooks

Image fournie par le vendeur

K. Wolf
Edité par Springer US, 2013
ISBN 10 : 1475708742 ISBN 13 : 9781475708745
Neuf Couverture souple
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Integral transforms are among the main mathematical methods for the solution of equations describing physical systems, because, quite generally, the coupling between the elements which constitute such a system-these can be the mass points in a finite spring. N° de réf. du vendeur 4206918

Contacter le vendeur

Acheter neuf

EUR 48,37
Expédition à EUR 48,99
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

K. Wolf
Edité par Springer, 2013
ISBN 10 : 1475708742 ISBN 13 : 9781475708745
Neuf Taschenbuch
impression à la demande

Vendeur : preigu, Osnabrück, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Integral Transforms in Science and Engineering | K. Wolf | Taschenbuch | xiii | Englisch | 2013 | Springer | EAN 9781475708745 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. N° de réf. du vendeur 105580096

Contacter le vendeur

Acheter neuf

EUR 50,25
Expédition à EUR 70
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 5 disponible(s)

Ajouter au panier

Image d'archives

Wolf, K.
Edité par Springer, 2013
ISBN 10 : 1475708742 ISBN 13 : 9781475708745
Neuf Couverture souple

Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur ABLIING23Mar2716030093155

Contacter le vendeur

Acheter neuf

EUR 52,13
Expédition à EUR 3,37
Expédition nationale : Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

K. Wolf
ISBN 10 : 1475708742 ISBN 13 : 9781475708745
Neuf Taschenbuch
impression à la demande

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -Integral transforms are among the main mathematical methods for the solution of equations describing physical systems, because, quite generally, the coupling between the elements which constitute such a system-these can be the mass points in a finite spring lattice or the continuum of a diffusive or elastic medium-prevents a straightforward 'single-particle' solution. By describing the same system in an appropriate reference frame, one can often bring about a mathematical uncoupling of the equations in such a way that the solution becomes that of noninteracting constituents. The 'tilt' in the reference frame is a finite or integral transform, according to whether the system has a finite or infinite number of elements. The types of coupling which yield to the integral transform method include diffusive and elastic interactions in 'classical' systems as well as the more common quantum-mechanical potentials. The purpose of this volume is to present an orderly exposition of the theory and some of the applications of the finite and integral transforms associated with the names of Fourier, Bessel, Laplace, Hankel, Gauss, Bargmann, and several others in the same vein. The volume is divided into four parts dealing, respectively, with finite, series, integral, and canonical transforms. They are intended to serve as independent units. The reader is assumed to have greater mathematical sophistication in the later parts, though.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 504 pp. Englisch. N° de réf. du vendeur 9781475708745

Contacter le vendeur

Acheter neuf

EUR 53,49
Expédition à EUR 60
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

K. Wolf
Edité par Springer, Humana Sep 2013, 2013
ISBN 10 : 1475708742 ISBN 13 : 9781475708745
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Integral transforms are among the main mathematical methods for the solution of equations describing physical systems, because, quite generally, the coupling between the elements which constitute such a system-these can be the mass points in a finite spring lattice or the continuum of a diffusive or elastic medium-prevents a straightforward 'single-particle' solution. By describing the same system in an appropriate reference frame, one can often bring about a mathematical uncoupling of the equations in such a way that the solution becomes that of noninteracting constituents. The 'tilt' in the reference frame is a finite or integral transform, according to whether the system has a finite or infinite number of elements. The types of coupling which yield to the integral transform method include diffusive and elastic interactions in 'classical' systems as well as the more common quantum-mechanical potentials. The purpose of this volume is to present an orderly exposition of the theory and some of the applications of the finite and integral transforms associated with the names of Fourier, Bessel, Laplace, Hankel, Gauss, Bargmann, and several others in the same vein. The volume is divided into four parts dealing, respectively, with finite, series, integral, and canonical transforms. They are intended to serve as independent units. The reader is assumed to have greater mathematical sophistication in the later parts, though. 504 pp. Englisch. N° de réf. du vendeur 9781475708745

Contacter le vendeur

Acheter neuf

EUR 53,49
Expédition à EUR 23
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

K. Wolf
ISBN 10 : 1475708742 ISBN 13 : 9781475708745
Neuf Paperback

Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : new. Paperback. Integral transforms are among the main mathematical methods for the solution of equations describing physical systems, because, quite generally, the coupling between the elements which constitute such a system-these can be the mass points in a finite spring lattice or the continuum of a diffusive or elastic medium-prevents a straightforward "single-particle" solution. By describing the same system in an appropriate reference frame, one can often bring about a mathematical uncoupling of the equations in such a way that the solution becomes that of noninteracting constituents. The "tilt" in the reference frame is a finite or integral transform, according to whether the system has a finite or infinite number of elements. The types of coupling which yield to the integral transform method include diffusive and elastic interactions in "classical" systems as well as the more common quantum-mechanical potentials. The purpose of this volume is to present an orderly exposition of the theory and some of the applications of the finite and integral transforms associated with the names of Fourier, Bessel, Laplace, Hankel, Gauss, Bargmann, and several others in the same vein. The volume is divided into four parts dealing, respectively, with finite, series, integral, and canonical transforms. They are intended to serve as independent units. The reader is assumed to have greater mathematical sophistication in the later parts, though. Integral transforms are among the main mathematical methods for the solution of equations describing physical systems, because, quite generally, the coupling between the elements which constitute such a system-these can be the mass points in a finite spring lattice or the continuum of a diffusive or elastic medium-prevents a straightforward "single-particle" solution. By describing the same system in an appropriate reference frame, one can often bring about a mathematical uncoupling of the equations in such a way that the solution becomes that of noninteracting constituents. The "tilt" in the reference frame is a finite or integral transform, according to whether the system has a finite or infinite number of elements. The types of coupling which yield to the integral transform method include diffusive and elastic interactions in "classical" systems as well as the more common quantum-mechanical potentials. The purpose of this volume is to present an orderly exposition of the theory and some of the applications of the finite and integral transforms associated with the names of Fourier, Bessel, Laplace, Hankel, Gauss, Bargmann, and several others in the same vein. The volume is divided into four parts dealing, respectively, with finite, series, integral, and canonical transforms. They are intended to serve as independent units. The reader is assumed to have greater mathematical sophistication in the later parts, though. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9781475708745

Contacter le vendeur

Acheter neuf

EUR 55,55
Livraison gratuite
Expédition nationale : Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

K. Wolf
Edité par Springer 2013-12-31, 2013
ISBN 10 : 1475708742 ISBN 13 : 9781475708745
Neuf Paperback

Vendeur : Chiron Media, Wallingford, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : New. N° de réf. du vendeur 6666-IUK-9781475708745

Contacter le vendeur

Acheter neuf

EUR 57,02
Expédition à EUR 17,89
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : 10 disponible(s)

Ajouter au panier

Image d'archives

Wolf, K.
Edité par Springer, 2013
ISBN 10 : 1475708742 ISBN 13 : 9781475708745
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9781475708745_new

Contacter le vendeur

Acheter neuf

EUR 58,66
Expédition à EUR 13,84
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

K. Wolf
Edité par Springer US, 2013
ISBN 10 : 1475708742 ISBN 13 : 9781475708745
Neuf Taschenbuch

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Integral transforms are among the main mathematical methods for the solution of equations describing physical systems, because, quite generally, the coupling between the elements which constitute such a system-these can be the mass points in a finite spring lattice or the continuum of a diffusive or elastic medium-prevents a straightforward 'single-particle' solution. By describing the same system in an appropriate reference frame, one can often bring about a mathematical uncoupling of the equations in such a way that the solution becomes that of noninteracting constituents. The 'tilt' in the reference frame is a finite or integral transform, according to whether the system has a finite or infinite number of elements. The types of coupling which yield to the integral transform method include diffusive and elastic interactions in 'classical' systems as well as the more common quantum-mechanical potentials. The purpose of this volume is to present an orderly exposition of the theory and some of the applications of the finite and integral transforms associated with the names of Fourier, Bessel, Laplace, Hankel, Gauss, Bargmann, and several others in the same vein. The volume is divided into four parts dealing, respectively, with finite, series, integral, and canonical transforms. They are intended to serve as independent units. The reader is assumed to have greater mathematical sophistication in the later parts, though. N° de réf. du vendeur 9781475708745

Contacter le vendeur

Acheter neuf

EUR 59,97
Expédition à EUR 63,78
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

K. Wolf
ISBN 10 : 1475708742 ISBN 13 : 9781475708745
Neuf Paperback / softback
impression à la demande

Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. N° de réf. du vendeur C9781475708745

Contacter le vendeur

Acheter neuf

EUR 68,26
Expédition à EUR 20,84
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

There are 3 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre