Image Segmentation and Compression Using Hidden Markov Models (The Springer International Series in Engineering and Computer Science, 571)

Jia Li; Gray, Robert M.

ISBN 10: 0792378997 ISBN 13: 9780792378990
Edité par Springer, 2000
Neuf(s) Couverture rigide

Vendeur Ria Christie Collections, Uxbridge, Royaume-Uni Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Vendeur AbeBooks depuis 25 mars 2015


A propos de cet article

Description :

In. N° de réf. du vendeur ria9780792378990_new

Signaler cet article

Synopsis :

In the current age of information technology, the issues of distributing and utilizing images efficiently and effectively are of substantial concern. Solutions to many of the problems arising from these issues are provided by techniques of image processing, among which segmentation and compression are topics of this book.
Image segmentation is a process for dividing an image into its constituent parts. For block-based segmentation using statistical classification, an image is divided into blocks and a feature vector is formed for each block by grouping statistics of its pixel intensities. Conventional block-based segmentation algorithms classify each block separately, assuming independence of feature vectors.
Image Segmentation and Compression Using Hidden Markov Models presents a new algorithm that models the statistical dependence among image blocks by two dimensional hidden Markov models (HMMs). Formulas for estimating the model according to the maximum likelihood criterion are derived from the EM algorithm. To segment an image, optimal classes are searched jointly for all the blocks by the maximum a posteriori (MAP) rule. The 2-D HMM is extended to multiresolution so that more context information is exploited in classification and fast progressive segmentation schemes can be formed naturally.
The second issue addressed in the book is the design of joint compression and classification systems using the 2-D HMM and vector quantization. A classifier designed with the side goal of good compression often outperforms one aimed solely at classification because overfitting to training data is suppressed by vector quantization.
Image Segmentation and Compression Using Hidden Markov Models is an essential reference source for researchers and engineers working in statistical signal processing or image processing, especially those who are interested in hidden Markov models. It is also of value to those working on statistical modeling.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Détails bibliographiques

Titre : Image Segmentation and Compression Using ...
Éditeur : Springer
Date d'édition : 2000
Reliure : Couverture rigide
Etat : New

Meilleurs résultats de recherche sur AbeBooks

Image d'archives

Jia Li et Robert M. Gray
Edité par Springer, 2000
ISBN 10 : 0792378997 ISBN 13 : 9780792378990
Ancien ou d'occasion Couverture rigide

Vendeur : Ammareal, Morangis, France

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : Très bon. Ancien livre de bibliothèque avec équipements. Edition 2000. Ammareal reverse jusqu'à 15% du prix net de cet article à des organisations caritatives. ENGLISH DESCRIPTION Book Condition: Used, Very good. Former library book. Edition 2000. Ammareal gives back up to 15% of this item's net price to charity organizations. N° de réf. du vendeur G-510-952

Contacter le vendeur

Acheter D'occasion

EUR 20,84
EUR 20,50 shipping
Expédition depuis France vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Robert M. Gray, Jia Li
Edité par Springer US, 2000
ISBN 10 : 0792378997 ISBN 13 : 9780792378990
Ancien ou d'occasion Couverture rigide

Vendeur : Buchpark, Trebbin, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : Gut. Zustand: Gut | Sprache: Englisch | Produktart: Bücher | In the current age of information technology, the issues of distributing and utilizing images efficiently and effectively are of substantial concern. Solutions to many of the problems arising from these issues are provided by techniques of image processing, among which segmentation and compression are topics of this book. Image segmentation is a process for dividing an image into its constituent parts. For block-based segmentation using statistical classification, an image is divided into blocks and a feature vector is formed for each block by grouping statistics of its pixel intensities. Conventional block-based segmentation algorithms classify each block separately, assuming independence of feature vectors. Image Segmentation and Compression Using Hidden Markov Models presents a new algorithm that models the statistical dependence among image blocks by two dimensional hidden Markov models (HMMs). Formulas for estimating the model according to the maximum likelihood criterion are derived from the EM algorithm. To segment an image, optimal classes are searched jointly for all the blocks by the maximum a posteriori (MAP) rule. The 2-D HMM is extended to multiresolution so that more context information is exploited in classification and fast progressive segmentation schemes can be formed naturally. The second issue addressed in the book is the design of joint compression and classification systems using the 2-D HMM and vector quantization. A classifier designed with the side goal of good compression often outperforms one aimed solely at classification because overfitting to training data is suppressed by vector quantization. Image Segmentation and Compression Using Hidden Markov Models is an essential reference source for researchers and engineers working in statistical signal processing or image processing, especially those who are interested in hidden Markov models. It is also of value to those working on statistical modeling. N° de réf. du vendeur 1432255/3

Contacter le vendeur

Acheter D'occasion

EUR 35,65
EUR 105 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Jia Li|Robert M. Gray
Edité par Springer US, 2000
ISBN 10 : 0792378997 ISBN 13 : 9780792378990
Neuf Couverture rigide
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Gebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. In the current age of information technology, the issues of distributing and utilizing images efficiently and effectively are of substantial concern. Solutions to many of the problems arising from these issues are provided by techniques of image processi. N° de réf. du vendeur 5970520

Contacter le vendeur

Acheter neuf

EUR 136,16
EUR 48,99 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Robert M. Gray (u. a.)
Edité par Springer, 2000
ISBN 10 : 0792378997 ISBN 13 : 9780792378990
Neuf Couverture rigide
impression à la demande

Vendeur : preigu, Osnabrück, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Image Segmentation and Compression Using Hidden Markov Models | Robert M. Gray (u. a.) | Buch | xiii | Englisch | 2000 | Springer | EAN 9780792378990 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. N° de réf. du vendeur 102549449

Contacter le vendeur

Acheter neuf

EUR 141,30
EUR 70 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 5 disponible(s)

Ajouter au panier

Image d'archives

Jia Li; Gray, Robert M.
Edité par Springer, 2000
ISBN 10 : 0792378997 ISBN 13 : 9780792378990
Neuf Couverture rigide

Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur ABLIING23Feb2416190184861

Contacter le vendeur

Acheter neuf

EUR 156,94
EUR 3,41 shipping
Expédition nationale : Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Li, Jia (EDT); Gray, Robert M. (EDT)
Edité par Springer, 2000
ISBN 10 : 0792378997 ISBN 13 : 9780792378990
Neuf Couverture rigide

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 757324-n

Contacter le vendeur

Acheter neuf

EUR 158,12
EUR 2,25 shipping
Expédition nationale : Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Robert M. Gray
ISBN 10 : 0792378997 ISBN 13 : 9780792378990
Neuf Couverture rigide
impression à la demande

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -In the current age of information technology, the issues of distributing and utilizing images efficiently and effectively are of substantial concern. Solutions to many of the problems arising from these issues are provided by techniques of image processing, among which segmentation and compression are topics of this book.Image segmentation is a process for dividing an image into its constituent parts. For block-based segmentation using statistical classification, an image is divided into blocks and a feature vector is formed for each block by grouping statistics of its pixel intensities. Conventional block-based segmentation algorithms classify each block separately, assuming independence of feature vectors.Image Segmentation and Compression Using Hidden Markov Models presents a new algorithm that models the statistical dependence among image blocks by two dimensional hidden Markov models (HMMs). Formulas for estimating the model according to the maximum likelihood criterion are derived from the EM algorithm. To segment an image, optimal classes are searched jointly for all the blocks by the maximum a posteriori (MAP) rule. The 2-D HMM is extended to multiresolution so that more context information is exploited in classification and fast progressive segmentation schemes can be formed naturally.The second issue addressed in the book is the design of joint compression and classification systems using the 2-D HMM and vector quantization. A classifier designed with the side goal of good compression often outperforms one aimed solely at classification because overfitting to training data is suppressed by vector quantization.Image Segmentation and Compression Using Hidden Markov Models is an essential reference source for researchers and engineers working in statistical signal processing or image processing, especially those who are interested in hidden Markov models. It is also of value to those working on statistical modeling.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 160 pp. Englisch. N° de réf. du vendeur 9780792378990

Contacter le vendeur

Acheter neuf

EUR 160,49
EUR 60 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Robert M. Gray
Edité par Springer US Aug 2000, 2000
ISBN 10 : 0792378997 ISBN 13 : 9780792378990
Neuf Couverture rigide
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In the current age of information technology, the issues of distributing and utilizing images efficiently and effectively are of substantial concern. Solutions to many of the problems arising from these issues are provided by techniques of image processing, among which segmentation and compression are topics of this book. Image segmentation is a process for dividing an image into its constituent parts. For block-based segmentation using statistical classification, an image is divided into blocks and a feature vector is formed for each block by grouping statistics of its pixel intensities. Conventional block-based segmentation algorithms classify each block separately, assuming independence of feature vectors. Image Segmentation and Compression Using Hidden Markov Models presents a new algorithm that models the statistical dependence among image blocks by two dimensional hidden Markov models (HMMs). Formulas for estimating the model according to the maximum likelihood criterion are derived from the EM algorithm. To segment an image, optimal classes are searched jointly for all the blocks by the maximum a posteriori (MAP) rule. The 2-D HMM is extended to multiresolution so that more context information is exploited in classification and fast progressive segmentation schemes can be formed naturally. The second issue addressed in the book is the design of joint compression and classification systems using the 2-D HMM and vector quantization. A classifier designed with the side goal of good compression often outperforms one aimed solely at classification because overfitting to training data is suppressed by vector quantization. Image Segmentation and Compression Using Hidden Markov Models is an essential reference source for researchers and engineers working in statistical signal processing or image processing, especially those who are interested in hidden Markov models. It is also of value to those working on statistical modeling. 160 pp. Englisch. N° de réf. du vendeur 9780792378990

Contacter le vendeur

Acheter neuf

EUR 160,49
EUR 23 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Robert M. Gray
Edité par Springer US, Springer US, 2000
ISBN 10 : 0792378997 ISBN 13 : 9780792378990
Neuf Couverture rigide

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - In the current age of information technology, the issues of distributing and utilizing images efficiently and effectively are of substantial concern. Solutions to many of the problems arising from these issues are provided by techniques of image processing, among which segmentation and compression are topics of this book. Image segmentation is a process for dividing an image into its constituent parts. For block-based segmentation using statistical classification, an image is divided into blocks and a feature vector is formed for each block by grouping statistics of its pixel intensities. Conventional block-based segmentation algorithms classify each block separately, assuming independence of feature vectors. Image Segmentation and Compression Using Hidden Markov Models presents a new algorithm that models the statistical dependence among image blocks by two dimensional hidden Markov models (HMMs). Formulas for estimating the model according to the maximum likelihood criterion are derived from the EM algorithm. To segment an image, optimal classes are searched jointly for all the blocks by the maximum a posteriori (MAP) rule. The 2-D HMM is extended to multiresolution so that more context information is exploited in classification and fast progressive segmentation schemes can be formed naturally. The second issue addressed in the book is the design of joint compression and classification systems using the 2-D HMM and vector quantization. A classifier designed with the side goal of good compression often outperforms one aimed solely at classification because overfitting to training data is suppressed by vector quantization. Image Segmentation and Compression Using Hidden Markov Models is an essential reference source for researchers and engineers working in statistical signal processing or image processing, especially those who are interested in hidden Markov models. It is also of value to those working on statistical modeling. N° de réf. du vendeur 9780792378990

Contacter le vendeur

Acheter neuf

EUR 167,14
EUR 62,06 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Li, Jia (EDT); Gray, Robert M. (EDT)
Edité par Springer, 2000
ISBN 10 : 0792378997 ISBN 13 : 9780792378990
Neuf Couverture rigide

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 757324-n

Contacter le vendeur

Acheter neuf

EUR 170,62
EUR 17,13 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

There are 6 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre