Inference in Hidden Markov Models

Cappe, Olivier; Moulines, Eric; Ryden, Tobias

ISBN 10: 1441923195 ISBN 13: 9781441923196
Edité par Springer, 2010
Neuf(s) Couverture souple

Vendeur Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Vendeur AbeBooks depuis 27 février 2001


A propos de cet article

Description :

This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statistical theory. The book builds on recent developments, both at the foundational level and the computational level, to present a self-contained view. Series: Springer Series in Statistics. Num Pages: 670 pages, biography. BIC Classification: PBT; PBWH; TJK. Category: (P) Professional & Vocational. Dimension: 234 x 156 x 34. Weight in Grams: 1015. . 2010. Softcover reprint of hardcover 1st ed. 2005. paperback. . . . . N° de réf. du vendeur V9781441923196

Signaler cet article

Synopsis :

Hidden Markov models have become a widely used class of statistical models with applications in diverse areas such as communications engineering, bioinformatics, finance and many more. This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statistical theory. In a unified way the book covers both models with finite state spaces, which allow for exact algorithms for filtering, estimation etc. and models with continuous state spaces (also called state-space models) requiring approximate simulation-based algorithms that are also described in detail. Many examples illustrate the algorithms and theory. The book builds on recent developments, both at the foundational level and the computational level, to present a self-contained view.

Présentation de l'éditeur:

This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statistical theory. The book builds on recent developments, both at the foundational level and the computational level, to present a self-contained view.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Détails bibliographiques

Titre : Inference in Hidden Markov Models
Éditeur : Springer
Date d'édition : 2010
Reliure : Couverture souple
Etat : New

Meilleurs résultats de recherche sur AbeBooks

Image fournie par le vendeur

Olivier Cappé|Eric Moulines|Tobias Ryden
Edité par Springer New York, 2010
ISBN 10 : 1441923195 ISBN 13 : 9781441923196
Neuf Couverture souple
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Builds on recent developments, both at the foundational level and the computational level, to present a self-contained viewIncludes supplementary material: sn.pub/extrasHidden Markov models have become a widely used class of statistical. N° de réf. du vendeur 4172842

Contacter le vendeur

Acheter neuf

EUR 158,41
Autre devise
Frais de port : EUR 48,99
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Cappé, Olivier; Moulines, Eric; Ryden, Tobias
Edité par Springer, 2010
ISBN 10 : 1441923195 ISBN 13 : 9781441923196
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9781441923196_new

Contacter le vendeur

Acheter neuf

EUR 170,63
Autre devise
Frais de port : EUR 13,77
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Cappé, Olivier; Moulines, Eric; Ryden, Tobias
Edité par Springer, 2010
ISBN 10 : 1441923195 ISBN 13 : 9781441923196
Neuf Couverture souple

Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur ABLIING23Mar2411530294061

Contacter le vendeur

Acheter neuf

EUR 186,44
Autre devise
Frais de port : EUR 3,43
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Cappe, Olivier; Moulines, Eric; Ryden, Tobias
Edité par Springer, 2010
ISBN 10 : 1441923195 ISBN 13 : 9781441923196
Neuf Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 11865599-n

Contacter le vendeur

Acheter neuf

EUR 186,87
Autre devise
Frais de port : EUR 2,27
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 15 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Olivier Cappé
ISBN 10 : 1441923195 ISBN 13 : 9781441923196
Neuf Taschenbuch

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Neuware -Hidden Markov models have become a widely used class of statistical models with applications in diverse areas such as communications engineering, bioinformatics, finance and many more. This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statistical theory. Topics range from filtering and smoothing of the hidden Markov chain to parameter estimation, Bayesian methods and estimation of the number of states.In a unified way the book covers both models with finite state spaces, which allow for exact algorithms for filtering, estimation etc. and models with continuous state spaces (also called state-space models) requiring approximate simulation-based algorithms that are also described in detail. Simulation in hidden Markov models is addressed in five different chapters that cover both Markov chain Monte Carlo and sequential Monte Carlo approaches. Many examples illustrate the algorithms and theory. The book also carefully treats Gaussian linear state-space models and their extensions and it contains a chapter on general Markov chain theory and probabilistic aspects of hidden Markov models.This volume will suit anybody with an interest in inference for stochastic processes, and it will be useful for researchers and practitioners in areas such as statistics, signal processing, communications engineering, control theory, econometrics, finance and more. The algorithmic parts of the book do not require an advanced mathematical background, while the more theoretical parts require knowledge of probability theory at the measure-theoretical level.From the reviews:'By providing an overall survey of results obtained so far in a very readable manner, and also presenting some new ideas, this well-written book will appeal to academic researchers in the field of HMMs, with PhD students working on related topics included. It will also appeal to practitioners and researchers from other fields by guiding them through the computational steps needed for making inference HMMs and/or by providing them with the relevant underlying statistical theory. In the reviewer's opinion this book will shortly become a reference work in its field.' MathSciNet'This monograph is a valuable resource. It provides a good literature review, an excellent account of the state of the art research on the necessary theory and algorithms, and ample illustrations of numerous applications of HMM. It goes much beyond the earlier resources on HMM.I anticipate this work to serve well many Technometrics readers in the coming years.' Haikady N. Nagaraja for Technometrics, November 2006Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 672 pp. Englisch. N° de réf. du vendeur 9781441923196

Contacter le vendeur

Acheter neuf

EUR 192,59
Autre devise
Frais de port : EUR 60
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Olivier Cappé
Edité par Springer New York Dez 2010, 2010
ISBN 10 : 1441923195 ISBN 13 : 9781441923196
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Hidden Markov models have become a widely used class of statistical models with applications in diverse areas such as communications engineering, bioinformatics, finance and many more. This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statistical theory. Topics range from filtering and smoothing of the hidden Markov chain to parameter estimation, Bayesian methods and estimation of the number of states.In a unified way the book covers both models with finite state spaces, which allow for exact algorithms for filtering, estimation etc. and models with continuous state spaces (also called state-space models) requiring approximate simulation-based algorithms that are also described in detail. Simulation in hidden Markov models is addressed in five different chapters that cover both Markov chain Monte Carlo and sequential Monte Carlo approaches. Many examples illustrate the algorithms and theory. The book also carefully treats Gaussian linear state-space models and their extensions and it contains a chapter on general Markov chain theory and probabilistic aspects of hidden Markov models.This volume will suit anybody with an interest in inference for stochastic processes, and it will be useful for researchers and practitioners in areas such as statistics, signal processing, communications engineering, control theory, econometrics, finance and more. The algorithmic parts of the book do not require an advanced mathematical background, while the more theoretical parts require knowledge of probability theory at the measure-theoretical level.From the reviews:'By providing an overall survey of results obtained so far in a very readable manner, and also presenting some new ideas, this well-written book will appeal to academic researchers in the field of HMMs, with PhD students working on related topics included. It will also appeal to practitioners and researchers from other fields by guiding them through the computational steps needed for making inference HMMs and/or by providing them with the relevant underlying statistical theory. In the reviewer's opinion this book will shortly become a reference work in its field.' MathSciNet'This monograph is a valuable resource. It provides a good literature review, an excellent account of the state of the art research on the necessary theory and algorithms, and ample illustrations of numerous applications of HMM. It goes much beyond the earlier resources on HMM.I anticipate this work to serve well many Technometrics readers in the coming years.' Haikady N. Nagaraja for Technometrics, November 2006 672 pp. Englisch. N° de réf. du vendeur 9781441923196

Contacter le vendeur

Acheter neuf

EUR 192,59
Autre devise
Frais de port : EUR 23
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Olivier Cappé
ISBN 10 : 1441923195 ISBN 13 : 9781441923196
Neuf Taschenbuch

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Hidden Markov models have become a widely used class of statistical models with applications in diverse areas such as communications engineering, bioinformatics, finance and many more. This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statistical theory. Topics range from filtering and smoothing of the hidden Markov chain to parameter estimation, Bayesian methods and estimation of the number of states.In a unified way the book covers both models with finite state spaces, which allow for exact algorithms for filtering, estimation etc. and models with continuous state spaces (also called state-space models) requiring approximate simulation-based algorithms that are also described in detail. Simulation in hidden Markov models is addressed in five different chapters that cover both Markov chain Monte Carlo and sequential Monte Carlo approaches. Many examples illustrate the algorithms and theory. The book also carefully treats Gaussian linear state-space models and their extensions and it contains a chapter on general Markov chain theory and probabilistic aspects of hidden Markov models.This volume will suit anybody with an interest in inference for stochastic processes, and it will be useful for researchers and practitioners in areas such as statistics, signal processing, communications engineering, control theory, econometrics, finance and more. The algorithmic parts of the book do not require an advanced mathematical background, while the more theoretical parts require knowledge of probability theory at the measure-theoretical level.From the reviews:'By providing an overall survey of results obtained so far in a very readable manner, and also presenting some new ideas, this well-written book will appeal to academic researchers in the field of HMMs, with PhD students working on related topics included. It will also appeal to practitioners and researchers from other fields by guiding them through the computational steps needed for making inference HMMs and/or by providing them with the relevant underlying statistical theory. In the reviewer's opinion this book will shortly become a reference work in its field.' MathSciNet'This monograph is a valuable resource. It provides a good literature review, an excellent account of the state of the art research on the necessary theory and algorithms, and ample illustrations of numerous applications of HMM. It goes much beyond the earlier resources on HMM.I anticipate this work to serve well many Technometrics readers in the coming years.' Haikady N. Nagaraja for Technometrics, November 2006. N° de réf. du vendeur 9781441923196

Contacter le vendeur

Acheter neuf

EUR 198,19
Autre devise
Frais de port : EUR 65,01
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Eric Moulines
ISBN 10 : 1441923195 ISBN 13 : 9781441923196
Neuf Paperback

Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : new. Paperback. Hidden Markov models have become a widely used class of statistical models with applications in diverse areas such as communications engineering, bioinformatics, finance and many more. This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statistical theory. Topics range from filtering and smoothing of the hidden Markov chain to parameter estimation, Bayesian methods and estimation of the number of states.In a unified way the book covers both models with finite state spaces, which allow for exact algorithms for filtering, estimation etc. and models with continuous state spaces (also called state-space models) requiring approximate simulation-based algorithms that are also described in detail. Simulation in hidden Markov models is addressed in five different chapters that cover both Markov chain Monte Carlo and sequential Monte Carlo approaches. Many examples illustrate the algorithms and theory. The book also carefully treats Gaussian linear state-space models and their extensions and it contains a chapter on general Markov chain theory and probabilistic aspects of hidden Markov models.This volume will suit anybody with an interest in inference for stochastic processes, and it will be useful for researchers and practitioners in areas such as statistics, signal processing, communications engineering, control theory, econometrics, finance and more. The algorithmic parts of the book do not require an advanced mathematical background, while the more theoretical parts require knowledge of probability theory at the measure-theoretical level.From the reviews:"By providing an overall survey of results obtained so far in a very readable manner, and also presenting some new ideas, this well-written book will appeal to academic researchers in the field of HMMs, with PhD students working on related topics included. It will also appeal to practitioners and researchers from other fields by guiding them through the computational steps needed for making inference HMMs and/or by providing them with the relevant underlying statistical theory. In the reviewer's opinion this book will shortly become a reference work in its field." MathSciNet"This monograph is a valuable resource. It provides a good literature review, an excellent account of the state of the art research on the necessary theory and algorithms, and ample illustrations of numerous applications of HMM. It goes much beyond the earlier resources on HMM.I anticipate this work to serve well many Technometrics readers in the coming years." Haikady N. Nagaraja for Technometrics, November 2006 Hidden Markov models have become a widely used class of statistical models with applications in diverse areas such as communications engineering, bioinformatics, finance and many more. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9781441923196

Contacter le vendeur

Acheter neuf

EUR 211,88
Autre devise
Frais de port : Gratuit
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Cappé, Olivier, Moulines, Eric, Ryden, Tobias
Edité par Springer, 2010
ISBN 10 : 1441923195 ISBN 13 : 9781441923196
Ancien ou d'occasion Paperback

Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : Like New. Like New. book. N° de réf. du vendeur ERICA77314419231956

Contacter le vendeur

Acheter D'occasion

EUR 288,87
Autre devise
Frais de port : EUR 28,74
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Cappe, Olivier; Moulines, Eric; Ryden, Tobias
Edité par Springer, 2010
ISBN 10 : 1441923195 ISBN 13 : 9781441923196
Ancien ou d'occasion Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 11865599

Contacter le vendeur

Acheter D'occasion

EUR 323,55
Autre devise
Frais de port : EUR 2,27
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 15 disponible(s)

Ajouter au panier

There are 1 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre