Vendeur
PBShop.store UK, Fairford, GLOS, Royaume-Uni
Évaluation du vendeur 4 sur 5 étoiles
Honoris Librarius
Membre AbeBooks depuis 1996
New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur GB-9781009218283
This extraordinary three-volume work, written in an engaging and rigorous style by a world authority in the field, provides an accessible, comprehensive introduction to the full spectrum of mathematical and statistical techniques underpinning contemporary methods in data-driven learning and inference. This final volume, Learning, builds on the foundational topics established in volume I to provide a thorough introduction to learning methods, addressing techniques such as least-squares methods, regularization, online learning, kernel methods, feedforward and recurrent neural networks, meta-learning, and adversarial attacks. A consistent structure and pedagogy is employed throughout this volume to reinforce student understanding, with over 350 end-of-chapter problems (including complete solutions for instructors), 280 figures, 100 solved examples, datasets and downloadable Matlab code. Supported by sister volumes Foundations and Inference, and unique in its scale and depth, this textbook sequence is ideal for early-career researchers and graduate students across many courses in signal processing, machine learning, data and inference.
À propos de l?auteur: Ali H. Sayed is Professor and Dean of Engineering at École Polytechnique Fédérale de Lausanne (EPFL), Switzerland. He has also served as Distinguished Professor and Chairman of Electrical Engineering at the University of California, Los Angeles, USA, and as President of the IEEE Signal Processing Society. He is a member of the US National Academy of Engineering (NAE) and The World Academy of Sciences (TWAS), and a recipient of the 2022 IEEE Fourier Award and the 2020 IEEE Norbert Wiener Society Award. He is a Fellow of the IEEE.
Titre : Inference and Learning from Data: Volume 3
Éditeur : Cambridge University Press
Date d'édition : 2022
Reliure : HRD
Etat : New
Vendeur : BooksRun, Philadelphia, PA, Etats-Unis
Hardcover. Etat : As New. New. It's a preowned item in almost perfect condition. It has no visible cosmetic imperfections. May come without any shrink wrap; pages are clean and not marred by notes or folds of any kind. N° de réf. du vendeur 100921828X-10-1
Quantité disponible : 1 disponible(s)
Vendeur : Speedyhen, Hertfordshire, Royaume-Uni
Etat : NEW. N° de réf. du vendeur NW9781009218283
Quantité disponible : 1 disponible(s)
Vendeur : Chiron Media, Wallingford, Royaume-Uni
Hardcover. Etat : New. N° de réf. du vendeur 6666-GRD-9781009218283
Quantité disponible : 1 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781009218283_new
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 44790675-n
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. N° de réf. du vendeur 701339400
Quantité disponible : 1 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Hardcover. Etat : Brand New. 990 pages. 9.80x7.20x1.69 inches. In Stock. N° de réf. du vendeur __100921828X
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 44790675-n
Quantité disponible : 1 disponible(s)
Vendeur : CitiRetail, Stevenage, Royaume-Uni
Hardcover. Etat : new. Hardcover. This extraordinary three-volume work, written in an engaging and rigorous style by a world authority in the field, provides an accessible, comprehensive introduction to the full spectrum of mathematical and statistical techniques underpinning contemporary methods in data-driven learning and inference. This final volume, Learning, builds on the foundational topics established in volume I to provide a thorough introduction to learning methods, addressing techniques such as least-squares methods, regularization, online learning, kernel methods, feedforward and recurrent neural networks, meta-learning, and adversarial attacks. A consistent structure and pedagogy is employed throughout this volume to reinforce student understanding, with over 350 end-of-chapter problems (including complete solutions for instructors), 280 figures, 100 solved examples, datasets and downloadable Matlab code. Supported by sister volumes Foundations and Inference, and unique in its scale and depth, this textbook sequence is ideal for early-career researchers and graduate students across many courses in signal processing, machine learning, data and inference. Written in an engaging and rigorous style by a world authority in the field, this is an accessible and comprehensive introduction to learning methods. With downloadable Matlab code and solutions for instructors, this is the ideal introduction for students of data science, machine learning and engineering. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9781009218283
Quantité disponible : 1 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9781009218283
Quantité disponible : Plus de 20 disponibles