For final year graduate and postgraduate courses in the finite element method, this book introduces the method as applied to linear, non-linear and one- and two-dimensional problems of engineering and applied sciences. It includes a step-by-step systematic approach to the formulation and analysis of differential and integral equations in variational forms. The book adopts a differential equation approach, avoiding the need for knowledge of the variational principles of solid mechanics in the development of the finite element models. The need for the weighted-integral formulation of differential equations is explained clearly, providing the student with logical reasons for the recasting of differential equations into variational form.
J.N. Reddy's, An Introduction to the Finite Element Method, third edition is an update of one of the most popular FEM textbooks available. The book retains its strong conceptual approach, clearly examining the mathematical underpinnings of FEM, and providing a general approach of engineering application areas.
Known for its detailed, carefully selected example problems and extensive selection of homework problems, the author has comprehensively covered a wide range of engineering areas making the book approriate for all engineering majors, and underscores the wide range of use FEM has in the professional world.
A supplementary text Web site located at http://www.mhhe.com/reddy3e contains password-protected solutions to end-of-chapter problems, general textbook information, supplementary chapters on the FEM1D and FEM2D computer programs, and more!