Synopsis
Due to its nondestructive imaging power, scanning tunneling microscopy has found major applications in the fields of physics, chemistry, engineering, and materials science. This book provides a comprehensive treatment of scanning tunneling and atomic force microscopy, with full coverage of the imaging mechanism, instrumentation, and sample applications. The work is the first single-author reference on STM and presents much valuable information previously available only as proceedings or collections of review articles. It contains a 32-page section of remarkable STM images, and is organized as a self-contained work, with all mathematical derivations fully detailed. As a source of background material and current data, the book will be an invaluable resource for all scientists, engineers, and technicians using the imaging abilities of STM and AFM. It may also be used as a textbook in senior-year and graduate level STM courses, and as a supplementary text in surface science, solid-state physics, materials science, microscopy, and quantum mechanics.
Présentation de l'éditeur
The scanning tunneling microscope and the atomic force microscope, both capable of imaging and manipulating individual atoms, were crowned with the Nobel Prize in Physics in 1986, and are the cornerstones of nanotechnology today. The first edition of this book has nurtured numerous beginners and experts since 1993. The second edition is a thoroughly updated version of this 'bible' in the field. The second edition includes a number of new developments in the field. Non-contact atomic-force microscopy has demonstrated true atomic resolution. It enables direct observation and mapping of individual chemical bonds. A new chapter about the underlying physics, atomic forces, is added. The chapter on atomic force microscopy is substantially expanded. Spin-polarized STM has enabled the observation of local magnetic phenomena down to atomic scale. A pedagogical presentation of the basic concepts is included. Inelastic scanning tunneling microscopy has shown the capability of studying vibrational modes of individual molecules. The underlying theory and new instrumentation are added. For biological research, to increase the speed of scanning to observe life phenomena in real time is a key. Advanced in this direction is presented as well. The capability of STM to manipulate individual atoms is one of the cornerstones of nanotechnology. The theoretical basis and in particular the relation between tunneling and interaction energy are thoroughly presented, together with experimental facts.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.