Introduction to Semi-Supervised Learning

Zhu, Xiaojin, Goldberg, Andrew. B

ISBN 10: 3031004205 ISBN 13: 9783031004209
Edité par Springer, 2009
Neuf(s) Couverture souple

Vendeur Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Vendeur AbeBooks depuis 27 février 2001


A propos de cet article

Description :

2009. Paperback. . . . . . N° de réf. du vendeur V9783031004209

Signaler cet article

Synopsis :

Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field. Table of Contents: Introduction to Statistical Machine Learning / Overview of Semi-Supervised Learning / Mixture Models and EM / Co-Training / Graph-Based Semi-Supervised Learning / Semi-Supervised Support Vector Machines/ Human Semi-Supervised Learning / Theory and Outlook

À propos de l?auteur: Xiaojin Zhu is an assistant professor in the Computer Sciences department at the University of Wisconsin-Madison. His research interests include statistical machine learning and its applications in cognitive psychology, natural language processing, and programming languages. Xiaojin received his Ph.D. from the Language Technologies Institute at Carnegie Mellon University in 2005. He worked on Mandarin speech recognition as a research staff member at IBM China Research Laboratory in 1996-1998. He received M.S. and B.S. in computer science from Shanghai Jiao Tong University in 1996 and 1993, respectively. His other interests include astronomy and geology. Andrew B.Goldberg is a Ph.D. candidate in the Computer Sciences department at the University of Wisconsin-Madison. His research interests lie in statistical machine learning (in particular, semi-supervised learning) and natural language processing. He has served on the program committee for national and international conferences including AAAI, ACL, EMNLP, and NAACL-HLT. Andrew was the recipient of a UW-Madison First-Year Graduate School Fellowship for 2005-2006 and a Yahoo! Key Technical Challenges Grant for 2008-2009. Before his graduate studies, Andrew received a B.A. in computer science from Amherst College, where he graduated magna cum laude with departmental distinction in 2003. He then spent two years writing, editing, and developing teaching materials for introductory computer science and Web programming textbooks at Deitel and Associates. During this time, he contributed to several Deitel books and co-authored the 3rd edition of Internet & World Wide Web How to Program. In 2005, Andrew entered graduate school at UW-Madison and, in 2006 received his M.S. in computer science. In his free time, Andrew enjoys live music, cooking, photography, and travel.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Détails bibliographiques

Titre : Introduction to Semi-Supervised Learning
Éditeur : Springer
Date d'édition : 2009
Reliure : Couverture souple
Etat : New

Meilleurs résultats de recherche sur AbeBooks

Image fournie par le vendeur

Xiaojin Zhu (u. a.)
Edité par Springer, 2009
ISBN 10 : 3031004205 ISBN 13 : 9783031004209
Neuf Taschenbuch
impression à la demande

Vendeur : preigu, Osnabrück, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Introduction to Semi-Supervised Learning | Xiaojin Zhu (u. a.) | Taschenbuch | xii | Englisch | 2009 | Springer | EAN 9783031004209 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. N° de réf. du vendeur 121974921

Contacter le vendeur

Acheter neuf

EUR 34,10
EUR 70 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 5 disponible(s)

Ajouter au panier

Image d'archives

Xiaojin Zhu,Andrew. B Goldberg
Edité par Springer 2009-06-08, 2009
ISBN 10 : 3031004205 ISBN 13 : 9783031004209
Neuf Paperback

Vendeur : Chiron Media, Wallingford, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : New. N° de réf. du vendeur 6666-GRD-9783031004209

Contacter le vendeur

Acheter neuf

EUR 34,19
EUR 17,78 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Andrew. B Goldberg
ISBN 10 : 3031004205 ISBN 13 : 9783031004209
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field. Table of Contents: Introduction to Statistical Machine Learning / Overview of Semi-Supervised Learning / Mixture Models and EM / Co-Training / Graph-Based Semi-Supervised Learning / Semi-Supervised Support Vector Machines / Human Semi-Supervised Learning / Theory and Outlook 132 pp. Englisch. N° de réf. du vendeur 9783031004209

Contacter le vendeur

Acheter neuf

EUR 35,30
EUR 23 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Andrew. B Goldberg
ISBN 10 : 3031004205 ISBN 13 : 9783031004209
Neuf Taschenbuch
impression à la demande

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field. Table of Contents: Introduction to Statistical Machine Learning / Overview of Semi-Supervised Learning / Mixture Models and EM / Co-Training / Graph-Based Semi-Supervised Learning / Semi-Supervised Support Vector Machines/ Human Semi-Supervised Learning / Theory and OutlookSpringer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 132 pp. Englisch. N° de réf. du vendeur 9783031004209

Contacter le vendeur

Acheter neuf

EUR 35,30
EUR 60 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Andrew. B Goldberg
ISBN 10 : 3031004205 ISBN 13 : 9783031004209
Neuf Taschenbuch

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field. Table of Contents: Introduction to Statistical Machine Learning / Overview of Semi-Supervised Learning / Mixture Models and EM / Co-Training / Graph-Based Semi-Supervised Learning / Semi-Supervised Support Vector Machines/ Human Semi-Supervised Learning / Theory and Outlook. N° de réf. du vendeur 9783031004209

Contacter le vendeur

Acheter neuf

EUR 35,30
EUR 61,31 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Geffner, Xiaojin; Bazzan, Andrew
Edité par Springer, 2009
ISBN 10 : 3031004205 ISBN 13 : 9783031004209
Ancien ou d'occasion Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 44569061

Contacter le vendeur

Acheter D'occasion

EUR 36,98
EUR 2,25 shipping
Expédition nationale : Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Geffner, Xiaojin; Bazzan, Andrew
Edité par Springer, 2009
ISBN 10 : 3031004205 ISBN 13 : 9783031004209
Neuf Couverture souple

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 44569061-n

Contacter le vendeur

Acheter neuf

EUR 37,06
EUR 17,22 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

ZHU, XIAOJIN
Edité par Springer, 2009
ISBN 10 : 3031004205 ISBN 13 : 9783031004209
Neuf Couverture souple

Vendeur : Speedyhen, London, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : NEW. N° de réf. du vendeur NW9783031004209

Contacter le vendeur

Acheter neuf

EUR 37,07
EUR 47,06 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Zhu, Xiaojin; Goldberg, Andrew. B
Edité par Springer, 2009
ISBN 10 : 3031004205 ISBN 13 : 9783031004209
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In English. N° de réf. du vendeur ria9783031004209_new

Contacter le vendeur

Acheter neuf

EUR 38,19
EUR 13,75 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Geffner, Xiaojin; Bazzan, Andrew
Edité par Springer, 2009
ISBN 10 : 3031004205 ISBN 13 : 9783031004209
Neuf Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 44569061-n

Contacter le vendeur

Acheter neuf

EUR 39,53
EUR 2,25 shipping
Expédition nationale : Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

There are 11 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre