Learning from Multiple Social Networks
Liqiang Nie
Vendu par AHA-BUCH GmbH, Einbeck, Allemagne
Vendeur AbeBooks depuis 14 août 2006
Neuf(s) - Couverture souple
Etat : Neuf
Quantité disponible : 1 disponible(s)
Ajouter au panierVendu par AHA-BUCH GmbH, Einbeck, Allemagne
Vendeur AbeBooks depuis 14 août 2006
Etat : Neuf
Quantité disponible : 1 disponible(s)
Ajouter au panierDruck auf Anfrage Neuware - Printed after ordering - With the proliferation of social network services, more and more social users, such as individuals and organizations, are simultaneously involved in multiple social networks for various purposes. In fact, multiple social networks characterize the same social users from different perspectives, and their contexts are usually consistent or complementary rather than independent. Hence, as compared to using information from a single social network, appropriate aggregation of multiple social networks offers us a better way to comprehensively understand the given social users. Learning across multiple social networks brings opportunities to new services and applications as well as new insights on user online behaviors, yet it raises tough challenges: (1) How can we map different social network accounts to the same social users (2) How can we complete the item-wise and block-wise missing data (3) How can we leverage the relatedness among sources to strengthen the learning performance And (4) How can we jointly model the dual-heterogeneities: multiple tasks exist for the given application and each task has various features from multiple sources These questions have been largely unexplored to date. We noticed this timely opportunity, and in this book we present some state-of-the-art theories and novel practical applications on aggregation of multiple social networks. In particular, we first introduce multi-source dataset construction. We then introduce how to effectively and efficiently complete the item-wise and block-wise missing data, which are caused by the inactive social users in some social networks. We next detail the proposed multi-source mono-task learning model and its application in volunteerism tendency prediction. As a counterpart, we also present a mono-source multi-task learning model and apply it to user interest inference. We seamlessly unify these models with the so-called multi-source multi-task learning, and demonstrate several application scenarios,such as occupation prediction. Finally, we conclude the book and figure out the future research directions in multiple social network learning, including the privacy issues and source complementarity modeling. This is preliminary research on learning from multiple social networks, and we hope it can inspire more active researchers to work on this exciting area. If we have seen further it is by standing on the shoulders of giants.
N° de réf. du vendeur 9783031011726
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Visitez la page d’accueil du vendeur
Conditions générales et informations client
I. Conditions générales
§ 1 Dispositions de base
(1) Les conditions générales suivantes s?appliquent à tous les contrats que vous concluez avec nous en tant que fournisseur (AHA-BUCH GmbH) via les plateformes Internet AbeBooks et/ou ZVAB. Sauf accord contraire, l?inclusion de l?une de vos propres conditions générales que vous utilisez sera contestée
(2) Un consommateur au sens des règlements suivants est toute personne physique qui conclut une transact...
Nous expédions votre commande après les avoir reçues
pour les articles disponibles au plus tard 24 heures,
pour les articles avec un approvisionnement de nuit au plus tard 48 heures.
Dans le cas où nous devons commander un article auprès de notre fournisseur, notre délai d’expédition dépend de la date de réception des articles, mais les articles seront expédiés le jour même.
Notre objectif est d’envoyer les articles commandés de la manière la plus rapide, mais aussi la plus efficace et la plus sécurisée à nos clients.
| Quantité commandée | 30 à 40 jours ouvrés | 7 à 14 jours ouvrés | 
|---|---|---|
| Premier article | EUR 61.21 | EUR 71.21 | 
Les délais de livraison sont fixés par les vendeurs et varient en fonction du transporteur et du lieu. Les commandes transitant par les douanes peuvent être retardées et les acheteurs sont responsables de tous les droits ou frais associés. Les vendeurs peuvent vous contacter au sujet de frais supplémentaires afin de couvrir toute augmentation des coûts d'expédition de vos articles.





