Learning Predictive Analytics with Python

Kumar, Ashish

ISBN 10: 1783983264 ISBN 13: 9781783983261
Edité par Packt Publishing, 2016
Ancien(s) ou d'occasion Paperback

Vendeur ThriftBooks-Dallas, Dallas, TX, Etats-Unis Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Vendeur AbeBooks depuis 2 juillet 2009


A propos de cet article

Description :

Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less. N° de réf. du vendeur G1783983264I3N00

Signaler cet article

Synopsis :

Key Features

  • A step-by-step guide to predictive modeling including lots of tips, tricks, and best practices
  • Get to grips with the basics of Predictive Analytics with Python
  • Learn how to use the popular predictive modeling algorithms such as Linear Regression, Decision Trees, Logistic Regression, and Clustering

Book Description

Social Media and the Internet of Things have resulted in an avalanche of data. Data is powerful but not in its raw form - It needs to be processed and modeled, and Python is one of the most robust tools out there to do so. It has an array of packages for predictive modeling and a suite of IDEs to choose from. Learning to predict who would win, lose, buy, lie, or die with Python is an indispensable skill set to have in this data age.

This book is your guide to getting started with Predictive Analytics using Python. You will see how to process data and make predictive models from it. We balance both statistical and mathematical concepts, and implement them in Python using libraries such as pandas, scikit-learn, and numpy.

You'll start by getting an understanding of the basics of predictive modeling, then you will see how to cleanse your data of impurities and get it ready it for predictive modeling. You will also learn more about the best predictive modeling algorithms such as Linear Regression, Decision Trees, and Logistic Regression. Finally, you will see the best practices in predictive modeling, as well as the different applications of predictive modeling in the modern world.

What you will learn

  • Understand the statistical and mathematical concepts behind Predictive Analytics algorithms and implement Predictive Analytics algorithms using Python libraries
  • Analyze the result parameters arising from the implementation of Predictive Analytics algorithms
  • Write Python modules/functions from scratch to execute segments or the whole of these algorithms
  • Recognize and mitigate various contingencies and issues related to the implementation of Predictive Analytics algorithms
  • Get to know various methods of importing, cleaning, sub-setting, merging, joining, concatenating, exploring, grouping, and plotting data with pandas and numpy
  • Create dummy datasets and simple mathematical simulations using the Python numpy and pandas libraries
  • Understand the best practices while handling datasets in Python and creating predictive models out of them

About the Author

Ashish Kumar has a B.Tech from IIT Madras and is a Young India Fellow from the batch of 2012-13. He is a data science enthusiast with extensive work experience in the field. As a part of his work experience, he has worked with tools, such as Python, R, and SAS. He has also implemented predictive algorithms to glean actionable insights for clients from transport and logistics, online payment, and healthcare industries. Apart from the data sciences, he is enthused by and adept at financial modelling and operational research. He is a prolific writer and has authored several online articles and short stories apart from running his own analytics blog. He also works pro-bono for a couple of social enterprises and freelances his data science skills.

He can be contacted on LinkedIn at https://goo.gl/yqrfo4, and on Twitter at https://twitter.com/asis64.

Table of Contents

  1. Getting Started with Predictive Modelling
  2. Data Cleaning
  3. Data Wrangling
  4. Statistical Concepts for Predictive Modelling
  5. Linear Regression with Python
  6. Logistic Regression with Python
  7. Clustering with Python
  8. Trees and Random Forests with Python
  9. Best Practices for Predictive Modelling
  10. A List of Links

Présentation de l'éditeur:

Key Features

  • A step-by-step guide to predictive modeling including lots of tips, tricks, and best practices
  • Get to grips with the basics of Predictive Analytics with Python
  • Learn how to use the popular predictive modeling algorithms such as Linear Regression, Decision Trees, Logistic Regression, and Clustering

Book Description

Social Media and the Internet of Things have resulted in an avalanche of data. Data is powerful but not in its raw form - It needs to be processed and modeled, and Python is one of the most robust tools out there to do so. It has an array of packages for predictive modeling and a suite of IDEs to choose from. Learning to predict who would win, lose, buy, lie, or die with Python is an indispensable skill set to have in this data age.

This book is your guide to getting started with Predictive Analytics using Python. You will see how to process data and make predictive models from it. We balance both statistical and mathematical concepts, and implement them in Python using libraries such as pandas, scikit-learn, and numpy.

You'll start by getting an understanding of the basics of predictive modeling, then you will see how to cleanse your data of impurities and get it ready it for predictive modeling. You will also learn more about the best predictive modeling algorithms such as Linear Regression, Decision Trees, and Logistic Regression. Finally, you will see the best practices in predictive modeling, as well as the different applications of predictive modeling in the modern world.

What you will learn

  • Understand the statistical and mathematical concepts behind Predictive Analytics algorithms and implement Predictive Analytics algorithms using Python libraries
  • Analyze the result parameters arising from the implementation of Predictive Analytics algorithms
  • Write Python modules/functions from scratch to execute segments or the whole of these algorithms
  • Recognize and mitigate various contingencies and issues related to the implementation of Predictive Analytics algorithms
  • Get to know various methods of importing, cleaning, sub-setting, merging, joining, concatenating, exploring, grouping, and plotting data with pandas and numpy
  • Create dummy datasets and simple mathematical simulations using the Python numpy and pandas libraries
  • Understand the best practices while handling datasets in Python and creating predictive models out of them

About the Author

Ashish Kumar has a B.Tech from IIT Madras and is a Young India Fellow from the batch of 2012-13. He is a data science enthusiast with extensive work experience in the field. As a part of his work experience, he has worked with tools, such as Python, R, and SAS. He has also implemented predictive algorithms to glean actionable insights for clients from transport and logistics, online payment, and healthcare industries. Apart from the data sciences, he is enthused by and adept at financial modelling and operational research. He is a prolific writer and has authored several online articles and short stories apart from running his own analytics blog. He also works pro-bono for a couple of social enterprises and freelances his data science skills.

He can be contacted on LinkedIn at https://goo.gl/yqrfo4, and on Twitter at https://twitter.com/asis64.

Table of Contents

  1. Getting Started with Predictive Modelling
  2. Data Cleaning
  3. Data Wrangling
  4. Statistical Concepts for Predictive Modelling
  5. Linear Regression with Python
  6. Logistic Regression with Python
  7. Clustering with Python
  8. Trees and Random Forests with Python
  9. Best Practices for Predictive Modelling
  10. A List of Links

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Détails bibliographiques

Titre : Learning Predictive Analytics with Python
Éditeur : Packt Publishing
Date d'édition : 2016
Reliure : Paperback
Etat : Good
Etat de la jaquette : No Jacket

Meilleurs résultats de recherche sur AbeBooks

Image d'archives

Kumar, Ashish:
Edité par Packt Publishing, 2016
ISBN 10 : 1783983264 ISBN 13 : 9781783983261
Ancien ou d'occasion paperback

Vendeur : Studibuch, Stuttgart, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

paperback. Etat : Gut. 354 Seiten; 9781783983261.3 Gewicht in Gramm: 1. N° de réf. du vendeur 953877

Contacter le vendeur

Acheter D'occasion

EUR 15,22
EUR 62,30 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Kumar, Ashish
Edité par Packt Publishing, 2016
ISBN 10 : 1783983264 ISBN 13 : 9781783983261
Neuf Couverture souple

Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur ABLIING23Mar2912160165541

Contacter le vendeur

Acheter neuf

EUR 47,09
EUR 3,40 shipping
Expédition nationale : Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Kumar, Ashish
Edité par Packt Publishing 2016-02, 2016
ISBN 10 : 1783983264 ISBN 13 : 9781783983261
Neuf PF

Vendeur : Chiron Media, Wallingford, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

PF. Etat : New. N° de réf. du vendeur 6666-IUK-9781783983261

Contacter le vendeur

Acheter neuf

EUR 50,06
EUR 17,64 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : 10 disponible(s)

Ajouter au panier

Image d'archives

Ashish Kumar
Edité par Packt Publishing Limited, 2016
ISBN 10 : 1783983264 ISBN 13 : 9781783983261
Neuf PAP
impression à la demande

Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781783983261

Contacter le vendeur

Acheter neuf

EUR 53,32
EUR 5,72 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Ashish Kumar
Edité par Packt Publishing Limited, 2016
ISBN 10 : 1783983264 ISBN 13 : 9781783983261
Neuf PAP
impression à la demande

Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

PAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781783983261

Contacter le vendeur

Acheter neuf

EUR 57,60
Livraison gratuite
Expédition nationale : Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Kumar, Ashish
Edité par Packt Publishing, 2016
ISBN 10 : 1783983264 ISBN 13 : 9781783983261
Neuf Couverture souple
impression à la demande

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Print on Demand pp. 354. N° de réf. du vendeur 371410270

Contacter le vendeur

Acheter neuf

EUR 58,73
EUR 7,40 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Kumar, Ashish
Edité par Packt Publishing, 2016
ISBN 10 : 1783983264 ISBN 13 : 9781783983261
Neuf Couverture souple

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. pp. 354. N° de réf. du vendeur 26374667905

Contacter le vendeur

Acheter neuf

EUR 59,73
EUR 3,40 shipping
Expédition nationale : Etats-Unis

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Ashish Kumar
Edité par Packt Publishing Limited, 2016
ISBN 10 : 1783983264 ISBN 13 : 9781783983261
Neuf Paperback / softback
impression à la demande

Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. N° de réf. du vendeur C9781783983261

Contacter le vendeur

Acheter neuf

EUR 60,45
EUR 19,56 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Kumar, Ashish
Edité par Packt Publishing, 2016
ISBN 10 : 1783983264 ISBN 13 : 9781783983261
Neuf Couverture souple
impression à la demande

Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. PRINT ON DEMAND pp. 354. N° de réf. du vendeur 18374667915

Contacter le vendeur

Acheter neuf

EUR 60,73
EUR 9,95 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Kumar, Ashish
Edité par Packt Publishing, 2016
ISBN 10 : 1783983264 ISBN 13 : 9781783983261
Neuf Couverture souple

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. &Uumlber den AutorrnrnAshish Kumar is an IIM alumnus and an engineer at heart. He has extensive experience in data science, machine learning, and natural language processing having worked at organizations, such as McAfee-Intel, an ambitious dat. N° de réf. du vendeur 513266591

Contacter le vendeur

Acheter neuf

EUR 60,80
EUR 48,99 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

There are 3 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre