Synopsis
IN 1959 I lectured on Boolean algebras at the University of Chicago. A mimeographed version of the notes on which the lectures were based circulated for about two years; this volume contains those notes, corrected and revised. Most of the corrections were suggested by Peter Crawley. To judge by his detailed and precise suggestions, he must have read every word, checked every reference, and weighed every argument, and I am lIery grateful to hirn for his help. This is not to say that he is to be held responsible for the imperfec- tions that remain, and, in particular, I alone am responsible for all expressions of personal opinion and irreverent view- point. P. R. H. Ann Arbor, Michigan ] anuary, 1963 Contents Section Page 1 1 Boolean rings ............................ . 2 Boolean algebras ......................... . 3 9 3 Fields of sets ............................ . 4 Regular open sets . . . . . . . . . . . . . . . . . . . 12 . . . . . . 5 Elementary relations. . . . . . . . . . . . . . . . . . 17 . . . . . 6 Order. . . . . . . . . . . . . . . . . . . . . . . . . . . 21 . . . . . . . . . 7 Infinite operations. . .. . . . . . . . . . . . . . . . . 25 . . . . . 8 Subalgebras . . . . . . . . . . . . . . . . . . . . .. . . . 31 . . . . . . 9 Homomorphisms . . . . . . . . . . . . . . . . . . . . 35 . . . . . . . 10 Free algebras . . . . . . . . . . . . . . . . . . . . . . 40 . . . . . . . 11 Ideals and filters. . . . . . . . . . . . . . . . . . . . 47 . . . . . . 12 The homomorphism theorem. . . . . . . . . . . . .. . . 52 . . 13 Boolean a-algebras . . . . . . . . . . . . . . . . . . 55 . . . . . . 14 The countable chain condition . . . . . . . . . . . . 61 . . . 15 Measure algebras . . . . . . . . . . . . . . . . . . . 64 . . . . . . . 16 Atoms.. . . . .. . . . . .. .. . .. ... . . . . .. . . ... . . .. 69 17 Boolean spaces . . . . . . . . . . . . . . . . . . . . 72 . . . . . . . 18 The representation theorem. . . . . . . . . . . . . . 77 . . . 19 Duali ty for ideals . . . . . . . . . . . . . . . . . .. . . 81 . . . . . 20 Duality for homomorphisms . . . . . . . . . . . . . . 84 . . . . 21 Completion . . . . . . . . . . . . . . . . . . . . . . . 90 . . . . . . . . 22 Boolean a-spaces . . . . . . . . . . . . . . . . . .. . . 97 . . . . . 23 The representation of a-algebras . . . . . . . . .. . . 100 . 24 Boolean measure spaces . . . . . . . . . . . . . .. . . 104 . . . 25 Incomplete algebras . . . . . . . . . . . . . . . .. . . 109 . . . . . 26 Products of algebras . . . . . . . . . . . . . . . .. . . 115 . . . . 27 Sums of algebras . . . . . . . . . . . . . . . . . .. . . 119 . . . . . 28 Isomorphisms of factors . . . . . . . . . . . . . .. . . 122 . . .
Présentation de l'éditeur
This book is an informal, although systematic presentation of lectures given by the authors on Boolean algebras, intended for advanced undergraduates and beginning graduate students. In a bold and refreshing style, this book treats Boolean algebras, develops some intriguing ideas, and provides rare insights. Exercises are generously sprinkled throughout the text for course study. This book can be considered a sequel to Paul Halmos's Lectures on Boolean Algebras, with the following changes: (1) the material in every section has been explained in more detail, and is now more accessible to undergraduates; (2) there are three times as many exercises, and the authors have now prepared a solutions manual; (3) a more careful explanation of the relationship between Boolean rings and Boolean algebras has been added; (4) thirteen chapters have been added, including chapters on topology and on continuous functions, a chapter on the extension theorem for homomorphisms, a new chapter on congruences and quotient algebras, a chapter on the lattice of ideals, and a chapter on duality theory for products.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.