MODERN DATA SCIENCE WITH R
BAUMER, BENJAMIN S.
Vendu par Speedyhen, London, Royaume-Uni
Vendeur AbeBooks depuis 26 novembre 2009
Neuf(s) - Couverture rigide
Etat : Neuf
Quantité disponible : 4 disponible(s)
Ajouter au panierVendu par Speedyhen, London, Royaume-Uni
Vendeur AbeBooks depuis 26 novembre 2009
Etat : Neuf
Quantité disponible : 4 disponible(s)
Ajouter au panierN° de réf. du vendeur NW9780367191498
From a review of the first edition: "Modern Data Science with R... is rich with examples and is guided by a strong narrative voice. What's more, it presents an organizing framework that makes a convincing argument that data science is a course distinct from applied statistics" (The American Statistician).
Modern Data Science with R is a comprehensive data science textbook for undergraduates that incorporates statistical and computational thinking to solve real-world data problems. Rather than focus exclusively on case studies or programming syntax, this book illustrates how statistical programming in the state-of-the-art R/RStudio computing environment can be leveraged to extract meaningful information from a variety of data in the service of addressing compelling questions.
The second edition is updated to reflect the growing influence of the tidyverse set of packages. All code in the book has been revised and styled to be more readable and easier to understand. New functionality from packages like sf, purrr, tidymodels, and tidytext is now integrated into the text. All chapters have been revised, and several have been split, re-organized, or re-imagined to meet the shifting landscape of best practice.
Benjamin S. Baumer is an associate professor in the Statistical & Data Sciences program at Smith College. He has been a practicing data scientist since 2004, when he became the first full-time statistical analyst for the New York Mets. Ben is a co-author of The Sabermetric Revolution and Analyzing Baseball Data with R. He received the 2019 Waller Education Award and the 2016 Significant Contributor Award from the Society for American Baseball Research.
Daniel T. Kaplan is the DeWitt Wallace emeritus professor of mathematics and computer science at Macalester College. He is the author of several textbooks on statistical modeling and statistical computing. Danny received the 2006 Macalester Excellence in Teaching award and the 2017 CAUSE Lifetime Achievement Award.
Nicholas J. Horton is Beitzel Professor of Technology and Society (Statistics and Data Science) at Amherst College. He is a Fellow of the ASA and the AAAS, co-chair of the National Academies Committee on Applied and Theoretical Statistics, recipient of a number of national teaching awards, author of a series of books on statistical computing, and actively involved in data science curriculum efforts to help students "think with data".
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Visitez la page d’accueil du vendeur
Orders usually ship within 2 business days. Shipping costs are based on books weighing 2.2 LB, or 1 KG. If your book order is heavy or oversized, we may contact you to let you know extra shipping is required.
Shipping costs are based on books weighing 2.2 LB, or 1 KG. If your book order is heavy or oversized, we may contact you to let you know extra shipping is required.
Quantité commandée | 4 à 10 jours ouvrés | 60 à 60 jours ouvrés |
---|---|---|
Premier article | EUR 6.90 | EUR 49.52 |
Les délais de livraison sont fixés par les vendeurs et varient en fonction du transporteur et du lieu. Les commandes transitant par les douanes peuvent être retardées et les acheteurs sont responsables de tous les droits ou frais associés. Les vendeurs peuvent vous contacter au sujet de frais supplémentaires afin de couvrir toute augmentation des coûts d'expédition de vos articles.