Vendeur
WorldofBooks, Goring-By-Sea, WS, Royaume-Uni
Évaluation du vendeur 5 sur 5 étoiles
Vendeur AbeBooks depuis 16 mars 2007
The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. N° de réf. du vendeur GOR014173512
This lucid, accessible introduction to supervised machine learning presents core concepts in a focused and logical way that is easy for beginners to follow. The author assumes basic calculus, linear algebra, probability and statistics but no prior exposure to machine learning. Coverage includes widely used traditional methods such as SVMs, boosted trees, HMMs, and LDAs, plus popular deep learning methods such as convolution neural nets, attention, transformers, and GANs. Organized in a coherent presentation framework that emphasizes the big picture, the text introduces each method clearly and concisely “from scratch” based on the fundamentals. All methods and algorithms are described by a clean and consistent style, with a minimum of unnecessary detail. Numerous case studies and concrete examples demonstrate how the methods can be applied in a variety of contexts.
À propos de l?auteur: Hui Jiang is Professor of Electrical Engineering and Computer Science at York University, where he has been since 2002. His main research interests include machine learning, particularly deep learning, and its applications to speech and audio processing, natural language processing, and computer vision. Over the past 30 years, he has worked on a wide range of research problems from these areas and published hundreds of technical articles and papers in the mainstream journals and top-tier conferences. His works have won the prestigious IEEE Best Paper Award and the ACL Outstanding Paper honor.
Titre : Machine Learning Fundamentals: A Concise ...
Éditeur : Cambridge University Press
Date d'édition : 2022
Reliure : Paperback
Etat : Very Good
Vendeur : BooksRun, Philadelphia, PA, Etats-Unis
Paperback. Etat : Good. New. It's a preowned item in good condition and includes all the pages. It may have some general signs of wear and tear, such as markings, highlighting, slight damage to the cover, minimal wear to the binding, etc., but they will not affect the overall reading experience. N° de réf. du vendeur 1108940021-11-1
Quantité disponible : 1 disponible(s)
Vendeur : Speedyhen, London, Royaume-Uni
Etat : NEW. N° de réf. du vendeur NW9781108940023
Quantité disponible : 2 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar2317530289180
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 42949723-n
Quantité disponible : 2 disponible(s)
Vendeur : Chiron Media, Wallingford, Royaume-Uni
Paperback. Etat : New. N° de réf. du vendeur 6666-GRD-9781108940023
Quantité disponible : 2 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 400 pages. 10.00x8.00x1.00 inches. In Stock. N° de réf. du vendeur __1108940021
Quantité disponible : 1 disponible(s)
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
Paperback or Softback. Etat : New. Machine Learning Fundamentals: A Concise Introduction. Book. N° de réf. du vendeur BBS-9781108940023
Quantité disponible : 5 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 42949723-n
Quantité disponible : 2 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781108940023_new
Quantité disponible : 2 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9781108940023
Quantité disponible : Plus de 20 disponibles