Machine Learning with PyTorch and Scikit-Learn: Develop machine learning and deep learning models with Python

Raschka, Sebastian; Liu, Yuxi (Hayden)

ISBN 10: 1837021953 ISBN 13: 9781837021956
Edité par Packt Publishing, 2022
Neuf(s) Couverture rigide

Vendeur Ria Christie Collections, Uxbridge, Royaume-Uni Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Vendeur AbeBooks depuis 25 mars 2015


A propos de cet article

Description :

In. N° de réf. du vendeur ria9781837021956_new

Signaler cet article

Synopsis :

This book of the bestselling and widely acclaimed Python Machine Learning series is a comprehensive guide to machine and deep learning using PyTorch's simple to code framework.

Purchase of the print or Kindle book includes a free eBook in PDF format.

Key Features
  • Learn applied machine learning with a solid foundation in theory
  • Clear, intuitive explanations take you deep into the theory and practice of Python machine learning
  • Fully updated and expanded to cover PyTorch, transformers, XGBoost, graph neural networks, and best practices
Book Description

Machine Learning with PyTorch and Scikit-Learn is a comprehensive guide to machine learning and deep learning with PyTorch. It acts as both a step-by-step tutorial and a reference you'll keep coming back to as you build your machine learning systems.

Packed with clear explanations, visualizations, and examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, we teach the principles allowing you to build models and applications for yourself.

Why PyTorch?

PyTorch is the Pythonic way to learn machine learning, making it easier to learn and simpler to code with. This book explains the essential parts of PyTorch and how to create models using popular libraries, such as PyTorch Lightning and PyTorch Geometric.

You will also learn about generative adversarial networks (GANs) for generating new data and training intelligent agents with reinforcement learning. Finally, this new edition is expanded to cover the latest trends in deep learning, including graph neural networks and large-scale transformers used for natural language processing (NLP).

This PyTorch book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.

What you will learn
  • Explore frameworks, models, and techniques for machines to 'learn' from data
  • Use scikit-learn for machine learning and PyTorch for deep learning
  • Train machine learning classifiers on images, text, and more
  • Build and train neural networks, transformers, and boosting algorithms
  • Discover best practices for evaluating and tuning models
  • Predict continuous target outcomes using regression analysis
  • Dig deeper into textual and social media data using sentiment analysis
Who this book is for

If you have a good grasp of Python basics and want to start learning about machine learning and deep learning, then this is the book for you. This is an essential resource written for developers and data scientists who want to create practical machine learning and deep learning applications using scikit-learn and PyTorch.

Before you get started with this book, you'll need a good understanding of calculus, as well as linear algebra.

Table of Contents
  1. Giving Computers the Ability to Learn from Data
  2. Training Simple Machine Learning Algorithms for Classification
  3. A Tour of Machine Learning Classifiers Using Scikit-Learn
  4. Building Good Training Datasets - Data Preprocessing
  5. Compressing Data via Dimensionality Reduction
  6. Learning Best Practices for Model Evaluation and Hyperparameter Tuning
  7. Combining Different Models for Ensemble Learning
  8. Applying Machine Learning to Sentiment Analysis
  9. Predicting Continuous Target Variables with Regression Analysis
  10. Working with Unlabeled Data - Clustering Analysis
  11. Implementing a Multilayer Artificial Neural Network from Scratch

(N.B. Please use the Look Inside option to see further chapters)

À propos des auteurs: Sebastian Raschka is an Assistant Professor of Statistics at the University of Wisconsin-Madison focusing on machine learning and deep learning research. As Lead AI Educator at Grid AI, Sebastian plans to continue following his passion for helping people get into machine learning and artificial intelligence.

Yuxi (Hayden) Liu was a Machine Learning Software Engineer at Google. With a wealth of experience from his tenure as a machine learning scientist, he has applied his expertise across data-driven domains and applied his ML expertise in computational advertising, cybersecurity, and information retrieval. He is the author of a series of influential machine learning books and an education enthusiast. His debut book, also the first edition of Python Machine Learning by Example, ranked the #1 bestseller in Amazon and has been translated into many different languages.

Vahid Mirjalili is a deep learning researcher focusing on CV applications. Vahid received a Ph.D. degree in both Mechanical Engineering and Computer Science from Michigan State University.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Détails bibliographiques

Titre : Machine Learning with PyTorch and ...
Éditeur : Packt Publishing
Date d'édition : 2022
Reliure : Couverture rigide
Etat : New

Meilleurs résultats de recherche sur AbeBooks

Image d'archives

Unknown, Unknown
ISBN 10 : 1837021953 ISBN 13 : 9781837021956
Neuf

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 49524272-n

Contacter le vendeur

Acheter neuf

EUR 73,22
EUR 2,25 shipping
Expédition nationale : Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Raschka, Sebastian; Liu, Yuxi (Hayden)
Edité par Packt Publishing, 2022
ISBN 10 : 1837021953 ISBN 13 : 9781837021956
Neuf Couverture rigide

Vendeur : California Books, Miami, FL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur I-9781837021956

Contacter le vendeur

Acheter neuf

EUR 75,55
Livraison gratuite
Expédition nationale : Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Unknown, Unknown
ISBN 10 : 1837021953 ISBN 13 : 9781837021956
Ancien ou d'occasion

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 49524272

Contacter le vendeur

Acheter D'occasion

EUR 77,75
EUR 2,25 shipping
Expédition nationale : Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Unknown, Unknown
ISBN 10 : 1837021953 ISBN 13 : 9781837021956
Ancien ou d'occasion

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 49524272

Contacter le vendeur

Acheter D'occasion

EUR 84,72
EUR 17,12 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Unknown, Unknown
ISBN 10 : 1837021953 ISBN 13 : 9781837021956
Neuf

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 49524272-n

Contacter le vendeur

Acheter neuf

EUR 86,58
EUR 17,12 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Sebastian Raschka (u. a.)
Edité par Packt Publishing, 2022
ISBN 10 : 1837021953 ISBN 13 : 9781837021956
Neuf Couverture rigide
impression à la demande

Vendeur : preigu, Osnabrück, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Machine Learning with PyTorch and Scikit-Learn | Develop machine learning and deep learning models with Python | Sebastian Raschka (u. a.) | Buch | Englisch | 2022 | Packt Publishing | EAN 9781837021956 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand. N° de réf. du vendeur 130901889

Contacter le vendeur

Acheter neuf

EUR 98,40
EUR 70 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 5 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Sebastian Raschka, Yuxi (Hayden) Liu
Edité par Packt Publishing Limited, GB, 2022
ISBN 10 : 1837021953 ISBN 13 : 9781837021956
Neuf Couverture rigide

Vendeur : Rarewaves USA, OSWEGO, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardback. Etat : New. N° de réf. du vendeur LU-9781837021956

Contacter le vendeur

Acheter neuf

EUR 102,94
Livraison gratuite
Expédition nationale : Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Sebastian Raschka, Yuxi (Hayden) Liu
Edité par Packt Publishing Limited, GB, 2022
ISBN 10 : 1837021953 ISBN 13 : 9781837021956
Neuf Couverture rigide

Vendeur : Rarewaves USA United, OSWEGO, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardback. Etat : New. N° de réf. du vendeur LU-9781837021956

Contacter le vendeur

Acheter neuf

EUR 105,43
EUR 42,64 shipping
Expédition nationale : Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Sebastian Raschka
Edité par Packt Publishing, 2022
ISBN 10 : 1837021953 ISBN 13 : 9781837021956
Neuf Couverture rigide
impression à la demande

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book of the bestselling and widely acclaimed Python Machine Learning series is a comprehensive guide to machine and deep learning using PyTorch's simple to code framework.Purchase of the print or Kindle book includes a free Elektronisches Buch in PDF format.Key FeaturesLearn applied machine learning with a solid foundation in theoryClear, intuitive explanations take you deep into the theory and practice of Python machine learningFully updated and expanded to cover PyTorch, transformers, XGBoost, graph neural networks, and best practicesBook DescriptionMachine Learning with PyTorch and Scikit-Learn is a comprehensive guide to machine learning and deep learning with PyTorch. It acts as both a step-by-step tutorial and a reference you'll keep coming back to as you build your machine learning systems.Packed with clear explanations, visualizations, and examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, we teach the principles allowing you to build models and applications for yourself.Why PyTorch PyTorch is the Pythonic way to learn machine learning, making it easier to learn and simpler to code with. This book explains the essential parts of PyTorch and how to create models using popular libraries, such as PyTorch Lightning and PyTorch Geometric.You will also learn about generative adversarial networks (GANs) for generating new data and training intelligent agents with reinforcement learning. Finally, this new edition is expanded to cover the latest trends in deep learning, including graph neural networks and large-scale transformers used for natural language processing (NLP).This PyTorch book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.What you will learnExplore frameworks, models, and techniques for machines to 'learn' from dataUse scikit-learn for machine learning and PyTorch for deep learningTrain machine learning classifiers on images, text, and moreBuild and train neural networks, transformers, and boosting algorithmsDiscover best practices for evaluating and tuning modelsPredict continuous target outcomes using regression analysisDig deeper into textual and social media data using sentiment analysisWho this book is forIf you have a good grasp of Python basics and want to start learning about machine learning and deep learning, then this is the book for you. This is an essential resource written for developers and data scientists who want to create practical machine learning and deep learning applications using scikit-learn and PyTorch.Before you get started with this book, you'll need a good understanding of calculus, as well as linear algebra.Table of ContentsGiving Computers the Ability to Learn from DataTraining Simple Machine Learning Algorithms for ClassificationA Tour of Machine Learning Classifiers Using Scikit-LearnBuilding Good Training Datasets - Data PreprocessingCompressing Data via Dimensionality ReductionLearning Best Practices for Model Evaluation and Hyperparameter TuningCombining Different Models for Ensemble LearningApplying Machine Learning to Sentiment AnalysisPredicting Continuous Target Variables with Regression AnalysisWorking with Unlabeled Data - Clustering AnalysisImplementing a Multilayer Artificial Neural Network from Scratch(N.B. Please use the Look Inside option to see further chapters). N° de réf. du vendeur 9781837021956

Contacter le vendeur

Acheter neuf

EUR 116,38
EUR 68,06 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Sebastian Raschka, Yuxi (Hayden) Liu
Edité par Packt Publishing Limited, GB, 2022
ISBN 10 : 1837021953 ISBN 13 : 9781837021956
Neuf Couverture rigide

Vendeur : Rarewaves.com UK, London, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardback. Etat : New. N° de réf. du vendeur LU-9781837021956

Contacter le vendeur

Acheter neuf

EUR 118,30
EUR 74,20 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

There are 4 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre