Machine Learning Theory and Applications
Xavier Vasques
Vendu par Rarewaves USA, OSWEGO, IL, Etats-Unis
Vendeur AbeBooks depuis 10 juin 2025
Neuf(s) - Couverture rigide
Etat : Neuf
Quantité disponible : Plus de 20 disponibles
Ajouter au panierVendu par Rarewaves USA, OSWEGO, IL, Etats-Unis
Vendeur AbeBooks depuis 10 juin 2025
Etat : Neuf
Quantité disponible : Plus de 20 disponibles
Ajouter au panierMachine Learning Theory and Applications Enables readers to understand mathematical concepts behind data engineering and machine learning algorithms and apply them using open-source Python libraries Machine Learning Theory and Applications delves into the realm of machine learning and deep learning, exploring their practical applications by comprehending mathematical concepts and implementing them in real-world scenarios using Python and renowned open-source libraries. This comprehensive guide covers a wide range of topics, including data preparation, feature engineering techniques, commonly utilized machine learning algorithms like support vector machines and neural networks, as well as generative AI and foundation models. To facilitate the creation of machine learning pipelines, a dedicated open-source framework named hephAIstos has been developed exclusively for this book. Moreover, the text explores the fascinating domain of quantum machine learning and offers insights on executing machine learning applications across diverse hardware technologies such as CPUs, GPUs, and QPUs. Finally, the book explains how to deploy trained models through containerized applications using Kubernetes and OpenShift, as well as their integration through machine learning operations (MLOps). Additional topics covered in Machine Learning Theory and Applications include: Current use cases of AI, including making predictions, recognizing images and speech, performing medical diagnoses, creating intelligent supply chains, natural language processing, and much moreClassical and quantum machine learning algorithms such as quantum-enhanced Support Vector Machines (QSVMs), QSVM multiclass classification, quantum neural networks, and quantum generative adversarial networks (qGANs)Different ways to manipulate data, such as handling missing data, analyzing categorical data, or processing time-related dataFeature rescaling, extraction, and selection, and how to put your trained models to life and production through containerized applicationsMachine Learning Theory and Applications is an essential resource for data scientists, engineers, and IT specialists and architects, as well as students in computer science, mathematics, and bioinformatics. The reader is expected to understand basic Python programming and libraries such as NumPy or Pandas and basic mathematical concepts, especially linear algebra.
N° de réf. du vendeur LU-9781394220618
Enables readers to understand mathematical concepts behind data engineering and machine learning algorithms and apply them using open-source Python libraries
Machine Learning Theory and Applications delves into the realm of machine learning and deep learning, exploring their practical applications by comprehending mathematical concepts and implementing them in real-world scenarios using Python and renowned open-source libraries. This comprehensive guide covers a wide range of topics, including data preparation, feature engineering techniques, commonly utilized machine learning algorithms like support vector machines and neural networks, as well as generative AI and foundation models. To facilitate the creation of machine learning pipelines, a dedicated open-source framework named hephAIstos has been developed exclusively for this book. Moreover, the text explores the fascinating domain of quantum machine learning and offers insights on executing machine learning applications across diverse hardware technologies such as CPUs, GPUs, and QPUs. Finally, the book explains how to deploy trained models through containerized applications using Kubernetes and OpenShift, as well as their integration through machine learning operations (MLOps).
Additional topics covered in Machine Learning Theory and Applications include:
Machine Learning Theory and Applications is an essential resource for data scientists, engineers, and IT specialists and architects, as well as students in computer science, mathematics, and bioinformatics. The reader is expected to understand basic Python programming and libraries such as NumPy or Pandas and basic mathematical concepts, especially linear algebra.
Xavier Vasques, PhD, is the Chief Technology Officer of IBM Technology (France) and Distinguished Data Scientist at IBM. He currently holds the chair of cognitive sciences and technologies at the École National Supérieure de Cognitique located in the University of Bordeaux, France and he is member of the scientific council of the École des Mines d'Alès, France. He is a mathematician and head of the Clinical Neuroscience Research Laboratory based in Montpellier (France).
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Visitez la page d’accueil du vendeur
Please note that we do not offer Priority shipping to any country.
We currently do not ship to the below countries:
Afghanistan
Bhutan
Brazil
Brunei Darussalam
Channel Islands
Chile
Israel
Lao
Mexico
Russian Federation
Saudi Arabia
South Africa
Yemen
Please do not attempt to place orders with any of these countries as a ship to address - they will be cancelled.