Vendeur
Chiron Media, Wallingford, Royaume-Uni
Évaluation du vendeur 5 sur 5 étoiles
Vendeur AbeBooks depuis 2 août 2010
N° de réf. du vendeur 6666-LBR-9783960092360
Der kompakte Schnelleinstieg in Machine Learning und Deep Learning - Die 3. Auflage des Bestsellers wurde ergänzt durch Kapitel zu Large Language Models wie ChatGPT und zu MLOps - Anhand konkreter Datensätze lernst du einen typischen Workflow kennen: vom Datenimport über Datenbereinigung, Datenanalyse bis hin zur Datenvisualisierung - Nicht nur für zukünftige Data Scientists und ML-Profis geeignet, sondern durch seine durchdachte Didaktik auch für Interessierte, die nur am Rande mit ML zu tun haben, wie z.B. Softwareentwickler*innen Machine Learning beeinflusst heute beinahe alle Bereiche der Technik und der Gesellschaft. Dieses Buch bietet Interessierten, die einen technischen Hintergrund haben, die schnellstmögliche Einführung in das umfangreiche Themengebiet des maschinellen Lernens und der statistischen Datenanalyse. Dabei werden folgende Themen behandelt und mit praktischen Beispielen veranschaulicht: - Datenvorbereitung, Feature-Auswahl, Modellvalidierung - Supervised und Unsupervised Learning - Neuronale Netze und Deep Learning - Reinforcement Learning - LLMs - moderne Sprachmodelle - MLOps - Machine Learning für die Praxis Anhand von Beispieldatensätzen lernst du einen typischen Workflow kennen: vom Datenimport über Datenbereinigung, Datenanalyse bis hin zur Datenvisualisierung. Mit den Codebeispielen kannst du in Jupyter Notebooks experimentieren. Sie basieren auf Python und den Bibliotheken Scikit-Learn, Pandas, NumPy, TensorFlow und Keras. Nach der Lektüre dieses Buchs hast du einen Überblick über das gesamte Thema und kannst Ansätze einordnen und bewerten. Das Buch vermittelt dir eine solide Grundlage, um erste eigene Machine-Learning-Modelle zu trainieren und vertiefende Literatur zu verstehen.
Titre : Machine Learning - kurz & gut: Eine ...
Éditeur : Dpunkt.Verlag GmbH -
Reliure : paperback
Etat : New
Vendeur : medimops, Berlin, Allemagne
Etat : good. Befriedigend/Good: Durchschnittlich erhaltenes Buch bzw. Schutzumschlag mit Gebrauchsspuren, aber vollständigen Seiten. / Describes the average WORN book or dust jacket that has all the pages present. N° de réf. du vendeur M03960092369-G
Quantité disponible : 1 disponible(s)
Vendeur : Chiron Media, Wallingford, Royaume-Uni
paperback. Etat : New. N° de réf. du vendeur 6666-KNV-9783960092360
Quantité disponible : 20 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 47979387
Quantité disponible : 2 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Neuware - Die 3. Auflage des Bestsellers wurde ergänzt durch Kapitel zu Large Language Models wie ChatGPT und zu MLOps Anhand konkreter Datensätze lernst du einen typischen Workflow kennen: vom Datenimport über Datenbereinigung, Datenanalyse bis hin zur Datenvisualisierung Nicht nur für zukünftige Data Scientists und ML-Profis geeignet, sondern durch seine durchdachte Didaktik auch für Interessierte, die nur am Rande mit ML zu tun haben, wie z.B. Softwareentwickler\*innen Machine Learning beeinflusst heute beinahe alle Bereiche der Technik und der Gesellschaft. Dieses Buch bietet Interessierten, die einen technischen Hintergrund haben, die schnellstmögliche Einführung in das umfangreiche Themengebiet des maschinellen Lernens und der statistischen Datenanalyse. Dabei werden folgende Themen behandelt und mit praktischen Beispielen veranschaulicht: Datenvorbereitung, Feature-Auswahl, Modellvalidierung Supervised und Unsupervised Learning Neuronale Netze und Deep Learning Reinforcement Learning LLMs - moderne Sprachmodelle MLOps - Machine Learning für die Praxis Anhand von Beispieldatensätzen lernst du einen typischen Workflow kennen: vom Datenimport über Datenbereinigung, Datenanalyse bis hin zur Datenvisualisierung. Mit den Codebeispielen kannst du in Jupyter Not Elektronisches Buch experimentieren. Sie basieren auf Python und den Bibliotheken Scikit-Learn, Pandas, NumPy, TensorFlow und Keras. Nach der Lektüre dieses Buchs hast du einen Überblick über das gesamte Thema und kannst Ansätze einordnen und bewerten. Das Buch vermittelt dir eine solide Grundlage, um erste eigene Machine-Learning-Modelle zu trainieren und vertiefende Literatur zu verstehen. N° de réf. du vendeur 9783960092360
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -Der kompakte Schnelleinstieg in Machine Learning und Deep Learningdpunkt.Verlag, Wieblinger Weg 17, 69123 Heidelberg 278 pp. Deutsch. N° de réf. du vendeur 9783960092360
Quantité disponible : 2 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. Neuware - Die 3. Auflage des Bestsellers wurde ergänzt durch Kapitel zu Large Language Models wie ChatGPT und zu MLOps Anhand konkreter Datensätze lernst du einen typischen Workflow kennen: vom Datenimport über Datenbereinigung, Datenanalyse bis hin zur Datenvisualisierung Nicht nur für zukünftige Data Scientists und ML-Profis geeignet, sondern durch seine durchdachte Didaktik auch für Interessierte, die nur am Rande mit ML zu tun haben, wie z.B. Softwareentwickler\*innen Machine Learning beeinflusst heute beinahe alle Bereiche der Technik und der Gesellschaft. Dieses Buch bietet Interessierten, die einen technischen Hintergrund haben, die schnellstmögliche Einführung in das umfangreiche Themengebiet des maschinellen Lernens und der statistischen Datenanalyse. Dabei werden folgende Themen behandelt und mit praktischen Beispielen veranschaulicht: Datenvorbereitung, Feature-Auswahl, Modellvalidierung Supervised und Unsupervised Learning Neuronale Netze und Deep Learning Reinforcement Learning LLMs - moderne Sprachmodelle MLOps - Machine Learning für die Praxis Anhand von Beispieldatensätzen lernst du einen typischen Workflow kennen: vom Datenimport über Datenbereinigung, Datenanalyse bis hin zur Datenvisualisierung. Mit den Codebeispielen kannst du in Jupyter Not Elektronisches Buch experimentieren. Sie basieren auf Python und den Bibliotheken Scikit-Learn, Pandas, NumPy, TensorFlow und Keras. Nach der Lektüre dieses Buchs hast du einen Überblick über das gesamte Thema und kannst Ansätze einordnen und bewerten. Das Buch vermittelt dir eine solide Grundlage, um erste eigene Machine-Learning-Modelle zu trainieren und vertiefende Literatur zu verstehen. 278 pp. Deutsch. N° de réf. du vendeur 9783960092360
Quantité disponible : 1 disponible(s)
Vendeur : Rheinberg-Buch Andreas Meier eK, Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. Neuware - Die 3. Auflage des Bestsellers wurde ergänzt durch Kapitel zu Large Language Models wie ChatGPT und zu MLOps Anhand konkreter Datensätze lernst du einen typischen Workflow kennen: vom Datenimport über Datenbereinigung, Datenanalyse bis hin zur Datenvisualisierung Nicht nur für zukünftige Data Scientists und ML-Profis geeignet, sondern durch seine durchdachte Didaktik auch für Interessierte, die nur am Rande mit ML zu tun haben, wie z.B. Softwareentwickler\*innen Machine Learning beeinflusst heute beinahe alle Bereiche der Technik und der Gesellschaft. Dieses Buch bietet Interessierten, die einen technischen Hintergrund haben, die schnellstmögliche Einführung in das umfangreiche Themengebiet des maschinellen Lernens und der statistischen Datenanalyse. Dabei werden folgende Themen behandelt und mit praktischen Beispielen veranschaulicht: Datenvorbereitung, Feature-Auswahl, Modellvalidierung Supervised und Unsupervised Learning Neuronale Netze und Deep Learning Reinforcement Learning LLMs - moderne Sprachmodelle MLOps - Machine Learning für die Praxis Anhand von Beispieldatensätzen lernst du einen typischen Workflow kennen: vom Datenimport über Datenbereinigung, Datenanalyse bis hin zur Datenvisualisierung. Mit den Codebeispielen kannst du in Jupyter Not Elektronisches Buch experimentieren. Sie basieren auf Python und den Bibliotheken Scikit-Learn, Pandas, NumPy, TensorFlow und Keras. Nach der Lektüre dieses Buchs hast du einen Überblick über das gesamte Thema und kannst Ansätze einordnen und bewerten. Das Buch vermittelt dir eine solide Grundlage, um erste eigene Machine-Learning-Modelle zu trainieren und vertiefende Literatur zu verstehen. 278 pp. Deutsch. N° de réf. du vendeur 9783960092360
Quantité disponible : 1 disponible(s)
Vendeur : preigu, Osnabrück, Allemagne
Taschenbuch. Etat : Neu. Machine Learning - kurz & gut | Eine Einführung mit Python, Scikit-Learn und TensorFlow | Oliver Zeigermann (u. a.) | Taschenbuch | kurz & gut | 280 S. | Deutsch | 2024 | O'Reilly | EAN 9783960092360 | Verantwortliche Person für die EU: dpunkt.verlag GmbH, Vanessa Niethammer, Wieblinger Weg 17, 69123 Heidelberg, niethammer[at]dpunkt[dot]de | Anbieter: preigu. N° de réf. du vendeur 128794084
Quantité disponible : 1 disponible(s)
Vendeur : Wegmann1855, Zwiesel, Allemagne
Taschenbuch. Etat : Neu. Neuware -Der kompakte Schnelleinstieg in Machine Learning und Deep Learning. N° de réf. du vendeur 9783960092360
Quantité disponible : 2 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 47979387-n
Quantité disponible : 2 disponible(s)