Master Equation and the Convergence Problem in Mean Field Games

Cardaliaguet, Pierre; Delarue, François; Lasry, Jean-michel; Lions, Pierre-Louis

ISBN 10: 0691190704 ISBN 13: 9780691190709
Edité par Princeton University Press, 2019
Ancien(s) ou d'occasion Couverture rigide

Vendeur GreatBookPrices, Columbia, MD, Etats-Unis Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Vendeur AbeBooks depuis 6 avril 2009


A propos de cet article

Description :

Unread book in perfect condition. N° de réf. du vendeur 34692586

Signaler cet article

Synopsis :

This book describes the latest advances in the theory of mean field games, which are optimal control problems with a continuum of players, each of them interacting with the whole statistical distribution of a population. While it originated in economics, this theory now has applications in areas as diverse as mathematical finance, crowd phenomena, epidemiology, and cybersecurity.

Because mean field games concern the interactions of infinitely many players in an optimal control framework, one expects them to appear as the limit for Nash equilibria of differential games with finitely many players as the number of players tends to infinity. This book rigorously establishes this convergence, which has been an open problem until now. The limit of the system associated with differential games with finitely many players is described by the so-called master equation, a nonlocal transport equation in the space of measures. After defining a suitable notion of differentiability in the space of measures, the authors provide a complete self-contained analysis of the master equation. Their analysis includes the case of common noise problems in which all the players are affected by a common Brownian motion. They then go on to explain how to use the master equation to prove the mean field limit.

This groundbreaking book presents two important new results in mean field games that contribute to a unified theoretical framework for this exciting and fast-developing area of mathematics.

À propos de l?auteur: Pierre Cardaliaguet is professor of mathematics at Paris Dauphine University. François Delarue is professor of mathematics at the University of Nice Sophia Antipolis. Jean-Michel Lasry is associate researcher of mathematics at Paris Dauphine University. Pierre-Louis Lions is professor of partial differential equations and their applications at the Collège de France.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Détails bibliographiques

Titre : Master Equation and the Convergence Problem ...
Éditeur : Princeton University Press
Date d'édition : 2019
Reliure : Couverture rigide
Etat : As New

Meilleurs résultats de recherche sur AbeBooks

Image d'archives

Cardaliaguet, Pierre, Delarue, Fran�ois, Lasry, Jean-Michel, Lions, Pierre-Louis
Edité par Princeton University Press, 2019
ISBN 10 : 0691190704 ISBN 13 : 9780691190709
Neuf Couverture rigide

Vendeur : Labyrinth Books, Princeton, NJ, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 229061

Contacter le vendeur

Acheter neuf

EUR 74,10
Frais de port : EUR 3,90
Vers Etats-Unis

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Pierre Cardaliaguet
Edité par Princeton University Press, 2019
ISBN 10 : 0691190704 ISBN 13 : 9780691190709
Neuf Couverture rigide

Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. 2019. Hardcover. . . . . . N° de réf. du vendeur V9780691190709

Contacter le vendeur

Acheter neuf

EUR 155,12
Frais de port : EUR 10,50
De Irlande vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Pierre Cardaliaguet
Edité par Princeton University Press, 2019
ISBN 10 : 0691190704 ISBN 13 : 9780691190709
Neuf Couverture rigide

Vendeur : Kennys Bookstore, Olney, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. 2019. Hardcover. . . . . . Books ship from the US and Ireland. N° de réf. du vendeur V9780691190709

Contacter le vendeur

Acheter neuf

EUR 194,07
Frais de port : EUR 9,10
Vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Cardaliaguet, Pierre/ Delarue, François/ Lasry, Jean-michel/ Lions, Pierre-Louis
Edité par Princeton Univ Pr, 2019
ISBN 10 : 0691190704 ISBN 13 : 9780691190709
Neuf Couverture rigide

Vendeur : Revaluation Books, Exeter, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : Brand New. 212 pages. 9.75x6.50x0.75 inches. In Stock. N° de réf. du vendeur __0691190704

Contacter le vendeur

Acheter neuf

EUR 209,24
Frais de port : EUR 14,18
De Royaume-Uni vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Jean-Michel Lasry, Pierre-Louis Lions, Pierre Cardaliaguet, François Delarue
ISBN 10 : 0691190704 ISBN 13 : 9780691190709
Neuf Couverture rigide

Vendeur : Rarewaves USA, OSWEGO, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardback. Etat : New. This book describes the latest advances in the theory of mean field games, which are optimal control problems with a continuum of players, each of them interacting with the whole statistical distribution of a population. While it originated in economics, this theory now has applications in areas as diverse as mathematical finance, crowd phenomena, epidemiology, and cybersecurity.Because mean field games concern the interactions of infinitely many players in an optimal control framework, one expects them to appear as the limit for Nash equilibria of differential games with finitely many players as the number of players tends to infinity. This book rigorously establishes this convergence, which has been an open problem until now. The limit of the system associated with differential games with finitely many players is described by the so-called master equation, a nonlocal transport equation in the space of measures. After defining a suitable notion of differentiability in the space of measures, the authors provide a complete self-contained analysis of the master equation. Their analysis includes the case of common noise problems in which all the players are affected by a common Brownian motion. They then go on to explain how to use the master equation to prove the mean field limit.This groundbreaking book presents two important new results in mean field games that contribute to a unified theoretical framework for this exciting and fast-developing area of mathematics. N° de réf. du vendeur LU-9780691190709

Contacter le vendeur

Acheter neuf

EUR 212,03
Frais de port : Gratuit
Vers Etats-Unis

Quantité disponible : 7 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Jean-Michel Lasry, Pierre-Louis Lions, Pierre Cardaliaguet, François Delarue
ISBN 10 : 0691190704 ISBN 13 : 9780691190709
Neuf Couverture rigide

Vendeur : Rarewaves USA United, OSWEGO, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardback. Etat : New. This book describes the latest advances in the theory of mean field games, which are optimal control problems with a continuum of players, each of them interacting with the whole statistical distribution of a population. While it originated in economics, this theory now has applications in areas as diverse as mathematical finance, crowd phenomena, epidemiology, and cybersecurity.Because mean field games concern the interactions of infinitely many players in an optimal control framework, one expects them to appear as the limit for Nash equilibria of differential games with finitely many players as the number of players tends to infinity. This book rigorously establishes this convergence, which has been an open problem until now. The limit of the system associated with differential games with finitely many players is described by the so-called master equation, a nonlocal transport equation in the space of measures. After defining a suitable notion of differentiability in the space of measures, the authors provide a complete self-contained analysis of the master equation. Their analysis includes the case of common noise problems in which all the players are affected by a common Brownian motion. They then go on to explain how to use the master equation to prove the mean field limit.This groundbreaking book presents two important new results in mean field games that contribute to a unified theoretical framework for this exciting and fast-developing area of mathematics. N° de réf. du vendeur LU-9780691190709

Contacter le vendeur

Acheter neuf

EUR 216,58
Frais de port : EUR 43,35
Vers Etats-Unis

Quantité disponible : 7 disponible(s)

Ajouter au panier

Image d'archives

Cardaliaguet, Pierre; Delarue, François; Lasry, Jean-Michel; Lions, Pierre-Louis
Edité par Princeton University Press, 2019
ISBN 10 : 0691190704 ISBN 13 : 9780691190709
Neuf Couverture rigide

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 26383173230

Contacter le vendeur

Acheter neuf

EUR 275,93
Frais de port : EUR 3,46
Vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Cardaliaguet, Pierre; Delarue, François; Lasry, Jean-Michel; Lions, Pierre-Louis
Edité par Princeton University Press, 2019
ISBN 10 : 0691190704 ISBN 13 : 9780691190709
Neuf Couverture rigide

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 379682225

Contacter le vendeur

Acheter neuf

EUR 298,94
Frais de port : EUR 7,37
De Royaume-Uni vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier