Maximal Function Methods for Sobolev Spaces

Kinnunen, Juha; Lehrback, Juha; Vahakangas, Antti

ISBN 10: 1470465752 ISBN 13: 9781470465759
Edité par Amer Mathematical Society
Neuf(s) Couverture souple

Vendeur GreatBookPrices, Columbia, MD, Etats-Unis Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Vendeur AbeBooks depuis 6 avril 2009


A propos de cet article

Description :

N° de réf. du vendeur 43600395-n

Signaler cet article

Synopsis :

This book discusses advances in maximal function methods related to Poincaré and Sobolev inequalities, pointwise estimates and approximation for Sobolev functions, Hardy's inequalities, and partial differential equations. Capacities are needed for fine properties of Sobolev functions and characterization of Sobolev spaces with zero boundary values. The authors consider several uniform quantitative conditions that are self-improving, such as Hardy's inequalities, capacity density conditions, and reverse Hölder inequalities. They also study Muckenhoupt weight properties of distance functions and combine these with weighted norm inequalities; notions of dimension are then used to characterize density conditions and to give sufficient and necessary conditions for Hardy's inequalities. At the end of the book, the theory of weak solutions to the p -Laplace equation and the use of maximal function techniques is this context are discussed.

The book is directed to researchers and graduate students interested in applications of geometric and harmonic analysis in Sobolev spaces and partial differential equations.

À propos de l?auteur: Juha Kinnunen, Aalto University, Finland.

Juha Lehrback, University of Jyvaskyla, Finland.

Antti Vahakangas, University of Jyvaskyla, Finland.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Détails bibliographiques

Titre : Maximal Function Methods for Sobolev Spaces
Éditeur : Amer Mathematical Society
Reliure : Couverture souple
Etat : New

Meilleurs résultats de recherche sur AbeBooks

Image d'archives

Juha Kinnunen
ISBN 10 : 1470465752 ISBN 13 : 9781470465759
Neuf Couverture souple

Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. 2021. Paperback. . . . . . N° de réf. du vendeur V9781470465759

Contacter le vendeur

Acheter neuf

EUR 118,33
Expédition à EUR 10,50
Expédition depuis Irlande vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Juha Kinnunen
ISBN 10 : 1470465752 ISBN 13 : 9781470465759
Neuf Paperback

Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : new. Paperback. This book discusses advances in maximal function methods related to Poincare and Sobolev inequalities, pointwise estimates and approximation for Sobolev functions, Hardy's inequalities, and partial differential equations. Capacities are needed for fine properties of Sobolev functions and characterization of Sobolev spaces with zero boundary values. The authors consider several uniform quantitative conditions that are self-improving, such as Hardy's inequalities, capacity density conditions, and reverse Hoelder inequalities. They also study Muckenhoupt weight properties of distance functions and combine these with weighted norm inequalities; notions of dimension are then used to characterize density conditions and to give sufficient and necessary conditions for Hardy's inequalities. At the end of the book, the theory of weak solutions to the p -Laplace equation and the use of maximal function techniques is this context are discussed.The book is directed to researchers and graduate students interested in applications of geometric and harmonic analysis in Sobolev spaces and partial differential equations. Discusses advances in maximal function methods related to Poincare and Sobolev inequalities, pointwise estimates and approximation for Sobolev functions, Hardy's inequalities, and partial differential equations. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9781470465759

Contacter le vendeur

Acheter neuf

EUR 134,56
Livraison gratuite
Expédition nationale : Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Juha Kinnunen
ISBN 10 : 1470465752 ISBN 13 : 9781470465759
Neuf Couverture souple

Vendeur : Kennys Bookstore, Olney, MD, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. 2021. Paperback. . . . . . Books ship from the US and Ireland. N° de réf. du vendeur V9781470465759

Contacter le vendeur

Acheter neuf

EUR 144,35
Expédition à EUR 8,88
Expédition nationale : Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Juha Kinnunen
ISBN 10 : 1470465752 ISBN 13 : 9781470465759
Neuf Paperback

Vendeur : AussieBookSeller, Truganina, VIC, Australie

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : new. Paperback. This book discusses advances in maximal function methods related to Poincare and Sobolev inequalities, pointwise estimates and approximation for Sobolev functions, Hardy's inequalities, and partial differential equations. Capacities are needed for fine properties of Sobolev functions and characterization of Sobolev spaces with zero boundary values. The authors consider several uniform quantitative conditions that are self-improving, such as Hardy's inequalities, capacity density conditions, and reverse Hoelder inequalities. They also study Muckenhoupt weight properties of distance functions and combine these with weighted norm inequalities; notions of dimension are then used to characterize density conditions and to give sufficient and necessary conditions for Hardy's inequalities. At the end of the book, the theory of weak solutions to the p -Laplace equation and the use of maximal function techniques is this context are discussed.The book is directed to researchers and graduate students interested in applications of geometric and harmonic analysis in Sobolev spaces and partial differential equations. Discusses advances in maximal function methods related to Poincare and Sobolev inequalities, pointwise estimates and approximation for Sobolev functions, Hardy's inequalities, and partial differential equations. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. N° de réf. du vendeur 9781470465759

Contacter le vendeur

Acheter neuf

EUR 207,43
Expédition à EUR 31,28
Expédition depuis Australie vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier