Model Reduction and Approximation: Theory and Algorithms

Peter Benner; Mario Ohlberger; Albert Cohen; Karen E. Wilcox

ISBN 10: 161197481X ISBN 13: 9781611974812
Edité par SIAM-Society for Industrial & Applied Mathematics, 2017
Neuf(s) Couverture souple

Vendeur Goodwill of Greater Milwaukee and Chicago, Racine, WI, Etats-Unis Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Vendeur AbeBooks depuis 20 septembre 2024

Nous sommes désolés, cet exemplaire n'est plus disponible. Voici les résultats qui se rapprochent le plus pour Model Reduction and Approximation: Theory and Algorithms.

A propos de cet article

Description :

N° de réf. du vendeur SEWV.161197481X.N

Signaler cet article

Synopsis :

Many physical, chemical, biomedical, and technical processes can be described by partial differential equations or dynamical systems. In spite of increasing computational capacities, many problems are of such high complexity that they are solvable only with severe simplifications, and the design of efficient numerical schemes remains a central research challenge. This book presents a tutorial introduction to recent developments in mathematical methods for model reduction and approximation of complex systems.

Model Reduction and Approximation: Theory and Algorithms:

  • contains three parts that cover (I) sampling-based methods, such as the reduced basis method and proper orthogonal decomposition, (II) approximation of high-dimensional problems by low-rank tensor techniques, and (III) system-theoretic methods, such as balanced truncation, interpolatory methods, and the Loewner framework
  • is tutorial in nature, giving an accessible introduction to state-of-the-art model reduction and approximation methods; and
  • covers a wide range of methods drawn from typically distinct communities (sampling based, tensor based, system-theoretic).

    À propos de l?auteur: Peter Benner is director at the Max Planck Institute for Dynamics of Complex Technical Systems and head of the Computational Methods in Systems and Control Theory department. He is also a professor at TU Chemnitz and adjunct professor at Otto-von-Guericke University Magdeburg, and he is a member of the Research Center Dynamic Systems: Systems Engineering in Magdeburg. He serves on the editorial board of several scientific journals, including SIAM Journal on Matrix Analysis and Applications.

    Mario Ohlberger is a full professor of applied mathematics and managing director of Applied Mathematics: Institute of Analysis and Numerics at the University of Münster. He is Associate Editor of five mathematical journals, including SIAM Journal on Scientific Computing. He is a member of the Center for Nonlinear Science, the Center for Multiscale Theory and Computation, and the Cluster of Excellence “Cells in Motion.”

    Albert Cohen is a professor at Laboratoire Jacques Louis Lions, Université Pierre et Marie Curie, Paris, France. He was awarded the Vasil Popov Prize (1995), the Jacques Herbrant Prize (2000), and the Blaise Pascal Prize (2004), and he has been the PI of the ERC Advanced Grant BREAD since 2014. He has been an invited speaker at ICM 2002 (Numerical Analysis section) and plenary speaker at ICIAM 2007. He is the managing editor of Foundations of Computational Mathematics. He has been a senior member of Institut Universitaire de France since 2013.

    Karen E. Willcox is Professor of Aeronautics and Astronautics at the Massachusetts Institute of Technology and Co-Director of the MIT Center for Computational Engineering. Prior to joining the faculty at MIT, she worked at Boeing Phantom Works with the Blended-Wing-Body aircraft design group. She has served in multiple leadership positions within AIAA and SIAM, including on the SIAM Activity Group on Computational Science and Engineering. She is Section Editor of SIAM Journal on Scientific Computing and Associate Editor of AIAA Journal.

    Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

    Détails bibliographiques

    Titre : Model Reduction and Approximation: Theory ...
    Éditeur : SIAM-Society for Industrial & Applied Mathematics
    Date d'édition : 2017
    Reliure : Couverture souple
    Etat : new

    Meilleurs résultats de recherche sur AbeBooks

    Image d'archives

    Unbekannt
    Edité par De Gruyter, 2025
    ISBN 10 : 3110500434 ISBN 13 : 9783110500431
    Ancien ou d'occasion Couverture rigide

    Vendeur : Buchpark, Trebbin, Allemagne

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Etat : Sehr gut. Zustand: Sehr gut | Seiten: 388 | Sprache: Englisch | Produktart: Bücher | An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This first volume focuses on real-time control theory, data assimilation, real-time visualization, high-dimensional state spaces and interaction of different reduction techniques. N° de réf. du vendeur 33515488/12

    Contacter le vendeur

    Acheter D'occasion

    EUR 79,19
    EUR 105 shipping
    Expédition depuis Allemagne vers Etats-Unis

    Quantité disponible : 1 disponible(s)

    Ajouter au panier