Multidimensional Mining of Massive Text Data
Jiawei Han
Vendu par AHA-BUCH GmbH, Einbeck, Allemagne
Vendeur AbeBooks depuis 14 août 2006
Neuf(s) - Couverture souple
Etat : Neuf
Quantité disponible : 1 disponible(s)
Ajouter au panierVendu par AHA-BUCH GmbH, Einbeck, Allemagne
Vendeur AbeBooks depuis 14 août 2006
Etat : Neuf
Quantité disponible : 1 disponible(s)
Ajouter au panierDruck auf Anfrage Neuware - Printed after ordering - Unstructured text, as one of the most important data forms, plays a crucial role in data-driven decision making in domains ranging from social networking and information retrieval to scientific research and healthcare informatics. In many emerging applications, people's information need from text data is becoming multidimensional-they demand useful insights along multiple aspects from a text corpus. However, acquiring such multidimensional knowledge from massive text data remains a challenging task.This book presents data mining techniques that turn unstructured text data into multidimensional knowledge. We investigate two core questions. (1) How does one identify task-relevant text data with declarative queries in multiple dimensions (2) How does one distill knowledge from text data in a multidimensional space To address the above questions, we develop a text cube framework. First, we develop a cube construction module that organizes unstructured data into a cube structure, by discovering latent multidimensional and multi-granular structure from the unstructured text corpus and allocating documents into the structure. Second, we develop a cube exploitation module that models multiple dimensions in the cube space, thereby distilling from user-selected data multidimensional knowledge. Together, these two modules constitute an integrated pipeline: leveraging the cube structure, users can perform multidimensional, multigranular data selection with declarative queries; and with cube exploitation algorithms, users can extract multidimensional patterns from the selected data for decision making.The proposed framework has two distinctive advantages when turning text data into multidimensional knowledge: flexibility and label-efficiency. First, it enables acquiring multidimensional knowledge flexibly, as the cube structure allows users to easily identify task-relevant data along multiple dimensions at varied granularities and further distill multidimensional knowledge. Second, the algorithms for cube construction and exploitation require little supervision; this makes the framework appealing for many applications where labeled data are expensive to obtain.
N° de réf. du vendeur 9783031007866
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Visitez la page d’accueil du vendeur
Conditions générales et informations client
I. Conditions générales
§ 1 Dispositions de base
(1) Les conditions générales suivantes s?appliquent à tous les contrats que vous concluez avec nous en tant que fournisseur (AHA-BUCH GmbH) via les plateformes Internet AbeBooks et/ou ZVAB. Sauf accord contraire, l?inclusion de l?une de vos propres conditions générales que vous utilisez sera contestée
(2) Un consommateur au sens des règlements suivants est toute personne physique qui conclut une transact...
Pour plus d'informationNous expédions votre commande après les avoir reçues
pour les articles disponibles au plus tard 24 heures,
pour les articles avec un approvisionnement de nuit au plus tard 48 heures.
Dans le cas où nous devons commander un article auprès de notre fournisseur, notre délai d’expédition dépend de la date de réception des articles, mais les articles seront expédiés le jour même.
Notre objectif est d’envoyer les articles commandés de la manière la plus rapide, mais aussi la plus efficace et la plus sécurisée à nos clients.