Proceedings of ELM 2021: Theory, Algorithms and Applications (Proceedings in Adaptation, Learning and Optimization, 16)

ISBN 10: 3031216776 ISBN 13: 9783031216770
Edité par Springer, 2023
Neuf(s) Couverture rigide

Vendeur Ria Christie Collections, Uxbridge, Royaume-Uni Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Vendeur AbeBooks depuis 25 mars 2015


A propos de cet article

Description :

In. N° de réf. du vendeur ria9783031216770_new

Signaler cet article

Synopsis :

This book contains papers from the International Conference on Extreme Learning Machine 2021, which was held in virtual on December 15-16, 2021. Extreme learning machines (ELM) aims to enable pervasive learning and pervasive intelligence. As advocated by ELM theories, it is exciting to see the convergence of machine learning and biological learning from the long-term point of view. ELM may be one of the fundamental `learning particles' filling the gaps between machine learning and biological learning (of which activation functions are even unknown). ELM represents a suite of (machine and biological) learning techniques in which hidden neurons need not be tuned: inherited from their ancestors or randomly generated. ELM learning theories show that effective learning algorithms can be derived based on randomly generated hidden neurons (biological neurons, artificial neurons, wavelets, Fourier series, etc.) as long as they are nonlinear piecewise continuous, independent of training data and application environments. Increasingly, evidence from neuroscience suggests that similar principles apply in biological learning systems. ELM theories and algorithms argue that "random hidden neurons" capture an essential aspect of biological learning mechanisms as well as the intuitive sense that the efficiency of biological learning need not rely on computing power of neurons. ELM theories thus hint at possible reasons why the brain is more intelligent and effective than current computers.

This conference provides a forum for academics, researchers, and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the ELM technique and brain learning.

This book covers theories, algorithms, and applications of ELM. It gives readers a glance of the most recent advances of ELM.


Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Détails bibliographiques

Titre : Proceedings of ELM 2021: Theory, Algorithms ...
Éditeur : Springer
Date d'édition : 2023
Reliure : Couverture rigide
Etat : New

Meilleurs résultats de recherche sur AbeBooks

Image fournie par le vendeur

ISBN 10 : 3031216776 ISBN 13 : 9783031216770
Neuf Couverture rigide
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Provides recent research on Extreme Learning Machines (ELM)Contains selected papers from the 11th International Conference on Extreme Learning Machines 2022Presents theory, algorithms, and applications of ELMThis book contains pa. N° de réf. du vendeur 738837178

Contacter le vendeur

Acheter neuf

EUR 197,62
EUR 48,99 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Kaj-Mikael Björk
Edité par Springer Nature Switzerland, 2023
ISBN 10 : 3031216776 ISBN 13 : 9783031216770
Neuf Couverture rigide
impression à la demande

Vendeur : preigu, Osnabrück, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Proceedings of ELM 2021 | Theory, Algorithms and Applications | Kaj-Mikael Björk | Buch | viii | Englisch | 2023 | Springer Nature Switzerland | EAN 9783031216770 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. N° de réf. du vendeur 125728394

Contacter le vendeur

Acheter neuf

EUR 204,95
EUR 70 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 5 disponible(s)

Ajouter au panier

Image d'archives

Björk, Kaj-Mikael (Edited by)
Edité par Springer, 2023
ISBN 10 : 3031216776 ISBN 13 : 9783031216770
Neuf Couverture rigide
impression à la demande

Vendeur : Revaluation Books, Exeter, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : Brand New. 180 pages. 9.25x6.10x0.44 inches. In Stock. This item is printed on demand. N° de réf. du vendeur __3031216776

Contacter le vendeur

Acheter neuf

EUR 235,27
EUR 11,42 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Kaj-Mikael Björk
ISBN 10 : 3031216776 ISBN 13 : 9783031216770
Neuf Couverture rigide

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Neuware -This book contains papers from the International Conference on Extreme Learning Machine 2021, which was held in virtual on December 15¿16, 2021. Extreme learning machines (ELM) aims to enable pervasive learning and pervasive intelligence. As advocated by ELM theories, it is exciting to see the convergence of machine learning and biological learning from the long-term point of view. ELM may be one of the fundamental `learning particles¿ filling the gaps between machine learning and biological learning (of which activation functions are even unknown). ELM represents a suite of (machine and biological) learning techniques in which hidden neurons need not be tuned: inherited from their ancestors or randomly generated. ELM learning theories show that effective learning algorithms can be derived based on randomly generated hidden neurons (biological neurons, artificial neurons, wavelets, Fourier series, etc.) as long as they are nonlinear piecewise continuous, independent of training dataand application environments. Increasingly, evidence from neuroscience suggests that similar principles apply in biological learning systems. ELM theories and algorithms argue that ¿random hidden neurons¿ capture an essential aspect of biological learning mechanisms as well as the intuitive sense that the efficiency of biological learning need not rely on computing power of neurons. ELM theories thus hint at possible reasons why the brain is more intelligent and effective than current computers.This conference provides a forum for academics, researchers, and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the ELM technique and brain learning.This book covers theories, algorithms, and applications of ELM. It gives readers a glance of the most recent advances of ELM.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 180 pp. Englisch. N° de réf. du vendeur 9783031216770

Contacter le vendeur

Acheter neuf

EUR 235,39
EUR 60 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Kaj-Mikael Björk
ISBN 10 : 3031216776 ISBN 13 : 9783031216770
Neuf Couverture rigide

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book contains papers from the International Conference on Extreme Learning Machine 2021, which was held in virtual on December 15-16, 2021. Extreme learning machines (ELM) aims to enable pervasive learning and pervasive intelligence. As advocated by ELM theories, it is exciting to see the convergence of machine learning and biological learning from the long-term point of view. ELM may be one of the fundamental `learning particles' filling the gaps between machine learning and biological learning (of which activation functions are even unknown). ELM represents a suite of (machine and biological) learning techniques in which hidden neurons need not be tuned: inherited from their ancestors or randomly generated. ELM learning theories show that effective learning algorithms can be derived based on randomly generated hidden neurons (biological neurons, artificial neurons, wavelets, Fourier series, etc.) as long as they are nonlinear piecewise continuous, independent of training dataand application environments. Increasingly, evidence from neuroscience suggests that similar principles apply in biological learning systems. ELM theories and algorithms argue that 'random hidden neurons' capture an essential aspect of biological learning mechanisms as well as the intuitive sense that the efficiency of biological learning need not rely on computing power of neurons. ELM theories thus hint at possible reasons why the brain is more intelligent and effective than current computers. This conference provides a forum for academics, researchers, and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the ELM technique and brain learning. This book covers theories, algorithms, and applications of ELM. It gives readers a glance of the most recent advances of ELM. N° de réf. du vendeur 9783031216770

Contacter le vendeur

Acheter neuf

EUR 235,39
EUR 62,21 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Kaj-Mikael Björk
ISBN 10 : 3031216776 ISBN 13 : 9783031216770
Neuf Couverture rigide
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book contains papers from the International Conference on Extreme Learning Machine 2021, which was held in virtual on December 15-16, 2021. Extreme learning machines (ELM) aims to enable pervasive learning and pervasive intelligence. As advocated by ELM theories, it is exciting to see the convergence of machine learning and biological learning from the long-term point of view. ELM may be one of the fundamental `learning particles' filling the gaps between machine learning and biological learning (of which activation functions are even unknown). ELM represents a suite of (machine and biological) learning techniques in which hidden neurons need not be tuned: inherited from their ancestors or randomly generated. ELM learning theories show that effective learning algorithms can be derived based on randomly generated hidden neurons (biological neurons, artificial neurons, wavelets, Fourier series, etc.) as long as they are nonlinear piecewise continuous, independent of training dataand application environments. Increasingly, evidence from neuroscience suggests that similar principles apply in biological learning systems. ELM theories and algorithms argue that 'random hidden neurons' capture an essential aspect of biological learning mechanisms as well as the intuitive sense that the efficiency of biological learning need not rely on computing power of neurons. ELM theories thus hint at possible reasons why the brain is more intelligent and effective than current computers. This conference provides a forum for academics, researchers, and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the ELM technique and brain learning. This book covers theories, algorithms, and applications of ELM. It gives readers a glance of the most recent advances of ELM. 180 pp. Englisch. N° de réf. du vendeur 9783031216770

Contacter le vendeur

Acheter neuf

EUR 235,39
EUR 23 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Kaj-Mikael Bjoerk
ISBN 10 : 3031216776 ISBN 13 : 9783031216770
Neuf Couverture rigide

Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : new. Hardcover. This book contains papers from the International Conference on Extreme Learning Machine 2021, which was held in virtual on December 1516, 2021. Extreme learning machines (ELM) aims to enable pervasive learning and pervasive intelligence. As advocated by ELM theories, it is exciting to see the convergence of machine learning and biological learning from the long-term point of view. ELM may be one of the fundamental `learning particles filling the gaps between machine learning and biological learning (of which activation functions are even unknown). ELM represents a suite of (machine and biological) learning techniques in which hidden neurons need not be tuned: inherited from their ancestors or randomly generated. ELM learning theories show that effective learning algorithms can be derived based on randomly generated hidden neurons (biological neurons, artificial neurons, wavelets, Fourier series, etc.) as long as they are nonlinear piecewise continuous, independent of training dataand application environments. Increasingly, evidence from neuroscience suggests that similar principles apply in biological learning systems. ELM theories and algorithms argue that random hidden neurons capture an essential aspect of biological learning mechanisms as well as the intuitive sense that the efficiency of biological learning need not rely on computing power of neurons. ELM theories thus hint at possible reasons why the brain is more intelligent and effective than current computers. This conference provides a forum for academics, researchers, and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the ELM technique and brain learning. This book covers theories, algorithms, and applications of ELM. It gives readers a glance of the most recent advances of ELM. ELM learning theories show that effective learning algorithms can be derived based on randomly generated hidden neurons (biological neurons, artificial neurons, wavelets, Fourier series, etc.) as long as they are nonlinear piecewise continuous, independent of training dataand application environments. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9783031216770

Contacter le vendeur

Acheter neuf

EUR 235,80
Livraison gratuite
Expédition nationale : Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Edité par Springer, 2023
ISBN 10 : 3031216776 ISBN 13 : 9783031216770
Neuf Couverture rigide

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. 1st ed. 2023 edition NO-PA16APR2015-KAP. N° de réf. du vendeur 26396295214

Contacter le vendeur

Acheter neuf

EUR 289,03
EUR 3,41 shipping
Expédition nationale : Etats-Unis

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Edité par Springer, 2023
ISBN 10 : 3031216776 ISBN 13 : 9783031216770
Neuf Couverture rigide
impression à la demande

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Print on Demand. N° de réf. du vendeur 401163249

Contacter le vendeur

Acheter neuf

EUR 309,06
EUR 7,42 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Kaj-Mikael Bjoerk
ISBN 10 : 3031216776 ISBN 13 : 9783031216770
Neuf Couverture rigide

Vendeur : AussieBookSeller, Truganina, VIC, Australie

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : new. Hardcover. This book contains papers from the International Conference on Extreme Learning Machine 2021, which was held in virtual on December 1516, 2021. Extreme learning machines (ELM) aims to enable pervasive learning and pervasive intelligence. As advocated by ELM theories, it is exciting to see the convergence of machine learning and biological learning from the long-term point of view. ELM may be one of the fundamental `learning particles filling the gaps between machine learning and biological learning (of which activation functions are even unknown). ELM represents a suite of (machine and biological) learning techniques in which hidden neurons need not be tuned: inherited from their ancestors or randomly generated. ELM learning theories show that effective learning algorithms can be derived based on randomly generated hidden neurons (biological neurons, artificial neurons, wavelets, Fourier series, etc.) as long as they are nonlinear piecewise continuous, independent of training dataand application environments. Increasingly, evidence from neuroscience suggests that similar principles apply in biological learning systems. ELM theories and algorithms argue that random hidden neurons capture an essential aspect of biological learning mechanisms as well as the intuitive sense that the efficiency of biological learning need not rely on computing power of neurons. ELM theories thus hint at possible reasons why the brain is more intelligent and effective than current computers. This conference provides a forum for academics, researchers, and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the ELM technique and brain learning. This book covers theories, algorithms, and applications of ELM. It gives readers a glance of the most recent advances of ELM. ELM learning theories show that effective learning algorithms can be derived based on randomly generated hidden neurons (biological neurons, artificial neurons, wavelets, Fourier series, etc.) as long as they are nonlinear piecewise continuous, independent of training dataand application environments. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. N° de réf. du vendeur 9783031216770

Contacter le vendeur

Acheter neuf

EUR 319,23
EUR 31,59 shipping
Expédition depuis Australie vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

There are 2 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre