The Regression Model of Machine Translation: Learning, Instance Selection, Decoding, and Evaluation

Mehmet Ergun Biçici

ISBN 10: 3846507490 ISBN 13: 9783846507490
Edité par LAP LAMBERT Academic Publishing, 2011
Neuf(s) Paperback

Vendeur Revaluation Books, Exeter, Royaume-Uni Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Vendeur AbeBooks depuis 6 janvier 2003


A propos de cet article

Description :

172 pages. 8.66x5.91x0.39 inches. In Stock. N° de réf. du vendeur 3846507490

Signaler cet article

Synopsis :

Regression based machine translation (RegMT) model provides a learning framework for machine translation, separating learning models for training, training instance selection, feature representation, and decoding. Transductive learning approach employs training instance selection algorithms that not only make RegMT computationally more scalable but also improve the performance of standard statistical machine translation (SMT) systems. Sparse regression models for SMT are introduced and the obtained results demonstrate that sparse regression models perform better than other learning models in predicting target features, estimating word alignments, creating phrase tables, and generating translation outputs. We develop good evaluation techniques for measuring the performance of the RegMT model and the quality of the translations. We demonstrate that sparse L1 regularized regression performs better than L2 regularized regression in the German-English translation task and in the Spanish-English translation task when using small sized training sets. Graph based decoding can provide an alternative to phrase-based decoding in translation domains having low vocabulary.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Détails bibliographiques

Titre : The Regression Model of Machine Translation:...
Éditeur : LAP LAMBERT Academic Publishing
Date d'édition : 2011
Reliure : Paperback
Etat : Brand New

Meilleurs résultats de recherche sur AbeBooks

Image fournie par le vendeur

Mehmet Ergun Biçici
ISBN 10 : 3846507490 ISBN 13 : 9783846507490
Neuf Couverture souple

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 5495410

Contacter le vendeur

Acheter neuf

EUR 55,21
EUR 48,99 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Mehmet Ergun Biçici
ISBN 10 : 3846507490 ISBN 13 : 9783846507490
Neuf Taschenbuch
impression à la demande

Vendeur : preigu, Osnabrück, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. The Regression Model of Machine Translation | Learning, Instance Selection, Decoding, and Evaluation | Mehmet Ergun Biçici | Taschenbuch | 172 S. | Englisch | 2011 | LAP LAMBERT Academic Publishing | EAN 9783846507490 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu Print on Demand. N° de réf. du vendeur 106736446

Contacter le vendeur

Acheter neuf

EUR 57,40
EUR 70 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 5 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Mehmet Ergun Biçici
ISBN 10 : 3846507490 ISBN 13 : 9783846507490
Neuf Taschenbuch
impression à la demande

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Regression based machine translation (RegMT) model provides a learning framework for machine translation, separating learning models for training, training instance selection, feature representation, and decoding. Transductive learning approach employs training instance selection algorithms that not only make RegMT computationally more scalable but also improve the performance of standard statistical machine translation (SMT) systems. Sparse regression models for SMT are introduced and the obtained results demonstrate that sparse regression models perform better than other learning models in predicting target features, estimating word alignments, creating phrase tables, and generating translation outputs. We develop good evaluation techniques for measuring the performance of the RegMT model and the quality of the translations. We demonstrate that sparse L1 regularized regression performs better than L2 regularized regression in the German-English translation task and in the Spanish-English translation task when using small sized training sets. Graph based decoding can provide an alternative to phrase-based decoding in translation domains having low vocabulary. N° de réf. du vendeur 9783846507490

Contacter le vendeur

Acheter neuf

EUR 68
EUR 61,37 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Mehmet Ergun Biçici
ISBN 10 : 3846507490 ISBN 13 : 9783846507490
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Regression based machine translation (RegMT) model provides a learning framework for machine translation, separating learning models for training, training instance selection, feature representation, and decoding. Transductive learning approach employs training instance selection algorithms that not only make RegMT computationally more scalable but also improve the performance of standard statistical machine translation (SMT) systems. Sparse regression models for SMT are introduced and the obtained results demonstrate that sparse regression models perform better than other learning models in predicting target features, estimating word alignments, creating phrase tables, and generating translation outputs. We develop good evaluation techniques for measuring the performance of the RegMT model and the quality of the translations. We demonstrate that sparse L1 regularized regression performs better than L2 regularized regression in the German-English translation task and in the Spanish-English translation task when using small sized training sets. Graph based decoding can provide an alternative to phrase-based decoding in translation domains having low vocabulary. 172 pp. Englisch. N° de réf. du vendeur 9783846507490

Contacter le vendeur

Acheter neuf

EUR 68
EUR 23 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Mehmet Ergun Biçici
ISBN 10 : 3846507490 ISBN 13 : 9783846507490
Neuf Taschenbuch

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Neuware -Regression based machine translation (RegMT) model provides a learning framework for machine translation, separating learning models for training, training instance selection, feature representation, and decoding. Transductive learning approach employs training instance selection algorithms that not only make RegMT computationally more scalable but also improve the performance of standard statistical machine translation (SMT) systems. Sparse regression models for SMT are introduced and the obtained results demonstrate that sparse regression models perform better than other learning models in predicting target features, estimating word alignments, creating phrase tables, and generating translation outputs. We develop good evaluation techniques for measuring the performance of the RegMT model and the quality of the translations. We demonstrate that sparse L1 regularized regression performs better than L2 regularized regression in the German-English translation task and in the Spanish-English translation task when using small sized training sets. Graph based decoding can provide an alternative to phrase-based decoding in translation domains having low vocabulary.Books on Demand GmbH, Überseering 33, 22297 Hamburg 172 pp. Englisch. N° de réf. du vendeur 9783846507490

Contacter le vendeur

Acheter neuf

EUR 68
EUR 60 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Mehmet Ergun Biçici
ISBN 10 : 3846507490 ISBN 13 : 9783846507490
Neuf Paperback

Vendeur : Revaluation Books, Exeter, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : Brand New. 172 pages. 8.66x5.91x0.39 inches. In Stock. N° de réf. du vendeur __3846507490

Contacter le vendeur

Acheter neuf

EUR 130,57
EUR 11,46 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier