Experimental evidences of universal relaxation and diffusion properties in complex materials and systems are presented. The materials discussed include liquids, colloids, polymers, rubbers, plastic crystals, biomolecules, ceramics, electrolytes, fuel cell materials, molten salts, inorganic, organic, polymeric and metallic glass-formers. The origin of the universal properties is traced to the relaxation dynamic of interacting many-body systems, rigorous theory of which does not exist as this time. However taking advantage of some insight and guides by solutions of much simplified models, predictions of the properties have been generated. The predictions can explain qualitative as well as quantitative in many cases the experimentally observed properties of different complex materials, essentially from the strength of the many-body interaction. The success provides some measure of understanding the relaxation properties of complex interacting systems and also paves the way for the construction of rigorous theories in the future. Change of relaxation dynamics when dimensions are reduced to nanometer scale are also considered and discussed.
Dr. Kia L. Ngai has worked in relaxation and diffusion in disordered and partially ordered systems across many disciplines for 25 years. He has authored or co-authored over 300 publications in archival journals. His works have been cited widely. Dr. Ngai has also written a chapter in the textbook, Physical Properties of Polymers, 3rd edition (Cambridge University Press, 2003); two chapters in Physical Properties of Polymers Handbook, edited by James E. Mark (Springer), and a chapter in Science and Technology of Rubber (Elsevier). He was the originator and organizer of the following large-scale international conference series entitled "International Discussion Meeting on Relaxations in Complex Systems" 1990, Herklion, Crete, Greece; 1993, Alicante, Spain; 1997 Vigo, Spain; 2001, Hersonissos, Crete, Greece; and 2005, Lille, France. I served as the editor of the Proceedings of each of these Meetings. The proceedings are published as refereed papers in the Journal of Non-Crystalline Solids (Elsevier) in 1991, 1994, 1998 and 2002.