Representation Learning for Natural Language Processing
Zhiyuan Liu
Vendu par AHA-BUCH GmbH, Einbeck, Allemagne
Vendeur AbeBooks depuis 14 août 2006
Neuf(s) - Couverture rigide
Etat : Neuf
Quantité disponible : 1 disponible(s)
Ajouter au panierVendu par AHA-BUCH GmbH, Einbeck, Allemagne
Vendeur AbeBooks depuis 14 août 2006
Etat : Neuf
Quantité disponible : 1 disponible(s)
Ajouter au panierDruck auf Anfrage Neuware - Printed after ordering - This book provides an overview of the recent advances in representation learning theory, algorithms, and applications for natural language processing (NLP), ranging from word embeddings to pre-trained language models. It is divided into four parts. Part I presents the representation learning techniques for multiple language entries, including words, sentences and documents, as well as pre-training techniques. Part II then introduces the related representation techniques to NLP, including graphs, cross-modal entries, and robustness. Part III then introduces the representation techniques for the knowledge that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, legal domain knowledge and biomedical domain knowledge. Lastly, Part IV discusses the remaining challenges and future research directions.The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, socialnetwork analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.As compared to the first edition, the second edition (1) provides a more detailed introduction to representation learning in Chapter 1; (2) adds four new chapters to introduce pre-trained language models, robust representation learning, legal knowledge representation learning and biomedical knowledge representation learning; (3) updates recent advances in representation learning in all chapters; and (4) corrects some errors in the first edition. The new contents will be approximately 50%+ compared to the first edition. This is an open access book.
N° de réf. du vendeur 9789819915996
This book provides an overview of the recent advances in representation learning theory, algorithms, and applications for natural language processing (NLP), ranging from word embeddings to pre-trained language models. It is divided into four parts. Part I presents the representation learning techniques for multiple language entries, including words, sentences and documents, as well as pre-training techniques. Part II then introduces the related representation techniques to NLP, including graphs, cross-modal entries, and robustness. Part III then introduces the representation techniques for the knowledge that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, legal domain knowledge and biomedical domain knowledge. Lastly, Part IV discusses the remaining challenges and future research directions.
The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, socialnetwork analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.As compared to the first edition, the second edition (1) provides a more detailed introduction to representation learning in Chapter 1; (2) adds four new chapters to introduce pre-trained language models, robust representation learning, legal knowledge representation learning and biomedical knowledge representation learning; (3) updates recent advances in representation learning in all chapters; and (4) corrects some errors in the first edition. The new contents will be approximately 50%+ compared to the first edition.
This is an open access book.
Zhiyuan Liu is an Associate Professor at the Department of Computer Science and Technology at Tsinghua University, China. His research interests include pretrained language models, knowledge graphs and social computation, and he has published more than 120 papers at leading conferences and in respected journals with over 28000 Google Scholar citations. He has received several awards/honors, including Excellent Doctoral Dissertation awards from Tsinghua University and the Chinese Association for Artificial Intelligence, and was named as one of MIT Technology Review Innovators Under 35 China (MIT TR-35 China). He has served as area chair for various conferences, including ACL, EMNLP, COLING.
Yankai Lin is an Assistant Professor at Gaoling School of Artificial Intelligence, Renmin University of China. His research interests include pretrained language models and knowledge-guided natural language processing. He has published more than 50 papers at leading conferences, including ACL, EMNLP, IJCAI, AAAI and NeurIPS with over 8000 Google Scholar citations. He was named an Academic Rising Star of Tsinghua University and a Baidu Scholar. He has served as area chair for EMNLP and ACL ARR.
Maosong Sun is a professor at the Department of Computer Science and Technology and the executive vice-dean of the Institute for Artificial Intelligence, Tsinghua University. His research interests include natural language processing, artificial intelligence, computational humanities and social sciences. He was a project chief scientist of the National Key Basic Research and Development Program (973 Program) of China. He has published over 200 papers at leading academic conferences and in respected journals, with over 30,000 Google Scholar citations. He is the director of Tsinghua University-National University of Singapore Joint Research Center on Next Generation Search Technologies, and the editor-in-chief of the Journal of Chinese Information Processing. Hereceived the National Outstanding Practitioner Award from the State Commission for Language Affairs, People's Republic of China in 2007, and the National Excellent Scientific and Technological Practitioner Award from the China Association for Science and Technology in 2016. He became the Member of the Academia Europaea in 2020, and the Fellow of the Association for Computational Linguistics (ACL) in 2022.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Visitez la page d’accueil du vendeur
Conditions générales et informations client
I. Conditions générales
§ 1 Dispositions de base
(1) Les conditions générales suivantes s?appliquent à tous les contrats que vous concluez avec nous en tant que fournisseur (AHA-BUCH GmbH) via les plateformes Internet AbeBooks et/ou ZVAB. Sauf accord contraire, l?inclusion de l?une de vos propres conditions générales que vous utilisez sera contestée
(2) Un consommateur au sens des règlements suivants est toute personne physique qui conclut une transact...
Nous expédions votre commande après les avoir reçues
pour les articles disponibles au plus tard 24 heures,
pour les articles avec un approvisionnement de nuit au plus tard 48 heures.
Dans le cas où nous devons commander un article auprès de notre fournisseur, notre délai d’expédition dépend de la date de réception des articles, mais les articles seront expédiés le jour même.
Notre objectif est d’envoyer les articles commandés de la manière la plus rapide, mais aussi la plus efficace et la plus sécurisée à nos clients.
| Quantité commandée | 30 à 40 jours ouvrés | 7 à 14 jours ouvrés |
|---|---|---|
| Premier article | EUR 64.88 | EUR 74.88 |
Les délais de livraison sont fixés par les vendeurs et varient en fonction du transporteur et du lieu. Les commandes transitant par les douanes peuvent être retardées et les acheteurs sont responsables de tous les droits ou frais associés. Les vendeurs peuvent vous contacter au sujet de frais supplémentaires afin de couvrir toute augmentation des coûts d'expédition de vos articles.