Robust and Nonlinear Time Series Analysis: Proceedings of a Workshop Organized by the Sonderforschungsbereich 123 ?Stochastische Mathematische . 1983 (Lecture Notes in Statistics, 26)

ISBN 10: 038796102X ISBN 13: 9780387961026
Edité par Springer, 1984
Neuf(s) Couverture souple

Vendeur Ria Christie Collections, Uxbridge, Royaume-Uni Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Vendeur AbeBooks depuis 25 mars 2015


A propos de cet article

Description :

In. N° de réf. du vendeur ria9780387961026_new

Signaler cet article

Synopsis :

Classical time series methods are based on the assumption that a particular stochastic process model generates the observed data. The, most commonly used assumption is that the data is a realization of a stationary Gaussian process. However, since the Gaussian assumption is a fairly stringent one, this assumption is frequently replaced by the weaker assumption that the process is wide sense stationary and that only the mean and covariance sequence is specified. This approach of specifying the probabilistic behavior only up to "second order" has of course been extremely popular from a theoretical point of view be- cause it has allowed one to treat a large variety of problems, such as prediction, filtering and smoothing, using the geometry of Hilbert spaces. While the literature abounds with a variety of optimal estimation results based on either the Gaussian assumption or the specification of second-order properties, time series workers have not always believed in the literal truth of either the Gaussian or second-order specifica- tion. They have none-the-less stressed the importance of such optimali- ty results, probably for two main reasons: First, the results come from a rich and very workable theory. Second, the researchers often relied on a vague belief in a kind of continuity principle according to which the results of time series inference would change only a small amount if the actual model deviated only a small amount from the assum- ed model.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Détails bibliographiques

Titre : Robust and Nonlinear Time Series Analysis: ...
Éditeur : Springer
Date d'édition : 1984
Reliure : Couverture souple
Etat : New

Meilleurs résultats de recherche sur AbeBooks

Image fournie par le vendeur

Franke, Jürgen [Hrsg.]
ISBN 10 : 038796102X ISBN 13 : 9780387961026
Ancien ou d'occasion Kartoniert

Vendeur : Antiquariat Lücke, Einzelunternehmung, Schweinfurt, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Kartoniert. Etat : Gut. 25 cm Lecture Notes in Statistics, 26. VII, 286 S. Orig.-Karton. Mit graphischen Darstellungen. Gutes Exemplar. N° de réf. du vendeur 31035

Contacter le vendeur

Acheter D'occasion

EUR 28
EUR 9,95 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Franke, J. & W. Härdle & D. Martin
Edité par Springer, 1984
ISBN 10 : 038796102X ISBN 13 : 9780387961026
Ancien ou d'occasion Paperback

Vendeur : Michener & Rutledge Booksellers, Inc., Baldwin City, KS, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : Fair. Paper browned, otherwise text clean and solid; Lecture Notes in Statistics; 9.61 X 6.69 X 0.68 inches; 286 pages. N° de réf. du vendeur 223500

Contacter le vendeur

Acheter D'occasion

EUR 37,41
EUR 5,13 shipping
Expédition nationale : Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

the Sonderforschungsbereich 123 ?Stochastische Mathematische Modelle?, Heidelberg 1983 (Lecture Notes in Statistics) [Paperback] Franke, J.; Härdle, W. and Martin, D.
Edité par Springer, 1984
ISBN 10 : 038796102X ISBN 13 : 9780387961026
Ancien ou d'occasion Couverture souple

Vendeur : CONTINENTAL MEDIA & BEYOND, Ocala, FL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : Used: Good. former library 1984 paperback vol 26 withdrawn stamp in book/ on edge of pages clean text tanned pages 286 pages/// K-13. N° de réf. du vendeur 0129N0FBC8V

Contacter le vendeur

Acheter D'occasion

EUR 40,07
EUR 5,97 shipping
Expédition nationale : Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Edité par Springer New York, 1984
ISBN 10 : 038796102X ISBN 13 : 9780387961026
Neuf Couverture souple
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Classical time series methods are based on the assumption that a particular stochastic process model generates the observed data. The, most commonly used assumption is that the data is a realization of a stationary Gaussian process. However, since the Gauss. N° de réf. du vendeur 5912662

Contacter le vendeur

Acheter neuf

EUR 92,27
EUR 48,99 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

J. Franke (u. a.)
Edité par Springer, 1984
ISBN 10 : 038796102X ISBN 13 : 9780387961026
Neuf Taschenbuch

Vendeur : preigu, Osnabrück, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Robust and Nonlinear Time Series Analysis | Proceedings of a Workshop Organized by the Sonderforschungsbereich 123 "Stochastische Mathematische Modelle", Heidelberg 1983 | J. Franke (u. a.) | Taschenbuch | 286 S. | Englisch | 1984 | Springer | EAN 9780387961026 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. N° de réf. du vendeur 107102135

Contacter le vendeur

Acheter neuf

EUR 95,80
EUR 70 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 5 disponible(s)

Ajouter au panier

Image d'archives

Edité par Springer, 1984
ISBN 10 : 038796102X ISBN 13 : 9780387961026
Neuf Couverture souple

Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur ABLIING23Feb2215580174697

Contacter le vendeur

Acheter neuf

EUR 102,49
EUR 3,41 shipping
Expédition nationale : Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

J. Franke
Edité par Springer, Springer Dez 1984, 1984
ISBN 10 : 038796102X ISBN 13 : 9780387961026
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Classical time series methods are based on the assumption that a particular stochastic process model generates the observed data. The, most commonly used assumption is that the data is a realization of a stationary Gaussian process. However, since the Gaussian assumption is a fairly stringent one, this assumption is frequently replaced by the weaker assumption that the process is wide~sense stationary and that only the mean and covariance sequence is specified. This approach of specifying the probabilistic behavior only up to 'second order' has of course been extremely popular from a theoretical point of view be cause it has allowed one to treat a large variety of problems, such as prediction, filtering and smoothing, using the geometry of Hilbert spaces. While the literature abounds with a variety of optimal estimation results based on either the Gaussian assumption or the specification of second-order properties, time series workers have not always believed in the literal truth of either the Gaussian or second-order specifica tion. They have none-the-less stressed the importance of such optimali ty results, probably for two main reasons: First, the results come from a rich and very workable theory. Second, the researchers often relied on a vague belief in a kind of continuity principle according to which the results of time series inference would change only a small amount if the actual model deviated only a small amount from the assum ed model. 300 pp. Englisch. N° de réf. du vendeur 9780387961026

Contacter le vendeur

Acheter neuf

EUR 106,99
EUR 23 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

J. Franke
ISBN 10 : 038796102X ISBN 13 : 9780387961026
Neuf Taschenbuch
impression à la demande

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -Classical time series methods are based on the assumption that a particular stochastic process model generates the observed data. The, most commonly used assumption is that the data is a realization of a stationary Gaussian process. However, since the Gaussian assumption is a fairly stringent one, this assumption is frequently replaced by the weaker assumption that the process is wide~sense stationary and that only the mean and covariance sequence is specified. This approach of specifying the probabilistic behavior only up to 'second order' has of course been extremely popular from a theoretical point of view be cause it has allowed one to treat a large variety of problems, such as prediction, filtering and smoothing, using the geometry of Hilbert spaces. While the literature abounds with a variety of optimal estimation results based on either the Gaussian assumption or the specification of second-order properties, time series workers have not always believed in the literal truth of either the Gaussian or second-order specifica tion. They have none-the-less stressed the importance of such optimali ty results, probably for two main reasons: First, the results come from a rich and very workable theory. Second, the researchers often relied on a vague belief in a kind of continuity principle according to which the results of time series inference would change only a small amount if the actual model deviated only a small amount from the assum ed model.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 300 pp. Englisch. N° de réf. du vendeur 9780387961026

Contacter le vendeur

Acheter neuf

EUR 106,99
EUR 60 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

J. Franke
ISBN 10 : 038796102X ISBN 13 : 9780387961026
Neuf Taschenbuch

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Classical time series methods are based on the assumption that a particular stochastic process model generates the observed data. The, most commonly used assumption is that the data is a realization of a stationary Gaussian process. However, since the Gaussian assumption is a fairly stringent one, this assumption is frequently replaced by the weaker assumption that the process is wide~sense stationary and that only the mean and covariance sequence is specified. This approach of specifying the probabilistic behavior only up to 'second order' has of course been extremely popular from a theoretical point of view be cause it has allowed one to treat a large variety of problems, such as prediction, filtering and smoothing, using the geometry of Hilbert spaces. While the literature abounds with a variety of optimal estimation results based on either the Gaussian assumption or the specification of second-order properties, time series workers have not always believed in the literal truth of either the Gaussian or second-order specifica tion. They have none-the-less stressed the importance of such optimali ty results, probably for two main reasons: First, the results come from a rich and very workable theory. Second, the researchers often relied on a vague belief in a kind of continuity principle according to which the results of time series inference would change only a small amount if the actual model deviated only a small amount from the assum ed model. N° de réf. du vendeur 9780387961026

Contacter le vendeur

Acheter neuf

EUR 114,36
EUR 62,61 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

J. Franke
ISBN 10 : 038796102X ISBN 13 : 9780387961026
Neuf Paperback / softback
impression à la demande

Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 512. N° de réf. du vendeur C9780387961026

Contacter le vendeur

Acheter neuf

EUR 135,14
EUR 18,16 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

There are 5 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre