STATISTICAL FOUNDATIONS OF DATA SCIENCE
FAN, JIANQING
Vendu par Speedyhen, London, Royaume-Uni
Vendeur AbeBooks depuis 26 novembre 2009
Neuf(s) - Couverture rigide
Etat : Neuf
Quantité disponible : 3 disponible(s)
Ajouter au panierVendu par Speedyhen, London, Royaume-Uni
Vendeur AbeBooks depuis 26 novembre 2009
Etat : Neuf
Quantité disponible : 3 disponible(s)
Ajouter au panierN° de réf. du vendeur NW9781466510845
Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications.
The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.
The authors are international authorities and leaders on the presented topics. All are fellows of the Institute of Mathematical Statistics and the American Statistical Association.
Jianqing Fan is Frederick L. Moore Professor, Princeton University. He is co-editing Journal of Business and Economics Statistics and was the co-editor of The Annals of Statistics, Probability Theory and Related Fields, and Journal of Econometrics and has been recognized by the 2000 COPSS Presidents' Award, AAAS Fellow, Guggenheim Fellow, Guy medal in silver, Noether Senior Scholar Award, and Academician of Academia Sinica.
Runze Li is Elberly family chair professor and AAAS fellow, Pennsylvania State University, and was co-editor of The Annals of Statistics.
Cun-Hui Zhang is distinguished professor, Rutgers University and was co-editor of Statistical Science.
Hui Zou is professor, University of Minnesota and was action editor of Journal of Machine Learning Research.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Visitez la page d’accueil du vendeur
Orders usually ship within 2 business days. Shipping costs are based on books weighing 2.2 LB, or 1 KG. If your book order is heavy or oversized, we may contact you to let you know extra shipping is required.
Shipping costs are based on books weighing 2.2 LB, or 1 KG. If your book order is heavy or oversized, we may contact you to let you know extra shipping is required.
Quantité commandée | 4 à 10 jours ouvrés | 60 à 60 jours ouvrés |
---|---|---|
Premier article | EUR 6.93 | EUR 49.72 |
Les délais de livraison sont fixés par les vendeurs et varient en fonction du transporteur et du lieu. Les commandes transitant par les douanes peuvent être retardées et les acheteurs sont responsables de tous les droits ou frais associés. Les vendeurs peuvent vous contacter au sujet de frais supplémentaires afin de couvrir toute augmentation des coûts d'expédition de vos articles.