Vendeur
Books Puddle, New York, NY, Etats-Unis
Évaluation du vendeur 4 sur 5 étoiles
Vendeur AbeBooks depuis 22 novembre 2018
N° de réf. du vendeur 26403920935
In the context of Lie groups, Control Theory is primarily concerned with the study of invariant, linear, bilinear and affine control systems. For invariant systems - considering that the control functions are piecewise constant - the solutions of the system has a well known and good description. This brings us to the first objective of this work: to give an explicit description of the solution curve for the other systems under the assumption that the linear vector fields commute. These solutions are obtained as the integral curve of a convenient invariant vector field on a semidirect product of a Lie group with an Euclidean space. In particular, we consider the case where the derivations associated to the linear vector fields are inner (which occurs, for example, in every semi simple Lie algebra), in which case the solutions are described in a considerably simpler and more elegant way. Thenceforth, our achievements are applied to obtain new propositions. The results range from expressions that relate the controllability of linear/affine control systems with associated invariant ones to the study of system semiconjugation by Lie group homomorphisms and properties of stability sets.
Titre : Solution Curve For Control Systems on Lie ...
Éditeur : LAP Lambert Academic Publishing
Date d'édition : 2020
Reliure : Couverture souple
Etat : New
Vendeur : preigu, Osnabrück, Allemagne
Taschenbuch. Etat : Neu. Solution Curve For Control Systems on Lie Groups | João Paulo Lima de Oliveira | Taschenbuch | Englisch | 2020 | LAP LAMBERT Academic Publishing | EAN 9786202923934 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu. N° de réf. du vendeur 130277012
Quantité disponible : 5 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9786202923934_new
Quantité disponible : Plus de 20 disponibles
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -In the context of Lie groups, Control Theory is primarily concerned with the study of invariant, linear, bilinear and affine control systems. For invariant systems - considering that the control functions are piecewise constant - the solutions of the system has a well known and good description. This brings us to the first objective of this work: to give an explicit description of the solution curve for the other systems under the assumption that the linear vector fields commute. These solutions are obtained as the integral curve of a convenient invariant vector field on a semidirect product of a Lie group with an Euclidean space. In particular, we consider the case where the derivations associated to the linear vector fields are inner (which occurs, for example, in every semi simple Lie algebra), in which case the solutions are described in a considerably simpler and more elegant way. Thenceforth, our achievements are applied to obtain new propositions. The results range from expressions that relate the controllability of linear/affine control systems with associated invariant ones to the study of system semiconjugation by Lie group homomorphisms and properties of stability sets.Books on Demand GmbH, Überseering 33, 22297 Hamburg 68 pp. Englisch. N° de réf. du vendeur 9786202923934
Quantité disponible : 2 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 68 pp. Englisch. N° de réf. du vendeur 9786202923934
Quantité disponible : 2 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - In the context of Lie groups, Control Theory is primarily concerned with the study of invariant, linear, bilinear and affine control systems. For invariant systems - considering that the control functions are piecewise constant - the solutions of the system has a well known and good description. This brings us to the first objective of this work: to give an explicit description of the solution curve for the other systems under the assumption that the linear vector fields commute. These solutions are obtained as the integral curve of a convenient invariant vector field on a semidirect product of a Lie group with an Euclidean space. In particular, we consider the case where the derivations associated to the linear vector fields are inner (which occurs, for example, in every semi simple Lie algebra), in which case the solutions are described in a considerably simpler and more elegant way. Thenceforth, our achievements are applied to obtain new propositions. The results range from expressions that relate the controllability of linear/affine control systems with associated invariant ones to the study of system semiconjugation by Lie group homomorphisms and properties of stability sets. N° de réf. du vendeur 9786202923934
Quantité disponible : 1 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9786202923934
Quantité disponible : Plus de 20 disponibles