Synopsis
The authors prove the long time stability of KAM tori (thus quasi-periodic solutions) for nonlinear Schrodinger equation $$\sqrt{-1}\, u_{t}=u_{xx}-M_{\xi}u+\varepsilon|u|^2u,$$ subject to Dirichlet boundary conditions $u(t,0)=u(t,\pi)=0$, where $M_{\xi}$ is a real Fourier multiplier. More precisely, they show that, for a typical Fourier multiplier $M_{\xi}$, any solution with the initial datum in the $\delta$-neighborhood of a KAM torus still stays in the $2\delta$-neighborhood of the KAM torus for a polynomial long time such as $|t|\leq \delta^{-\mathcal{M}}$ for any given $\mathcal M$ with $0\leq \mathcal{M}\leq C(\varepsilon)$, where $C(\varepsilon)$ is a constant depending on $\varepsilon$ and $C(\varepsilon)\rightarrow\infty$ as $\varepsilon\rightarrow0$.
À propos de l?auteur
Hongzi Cong, Dalian University of Technology, China.
Jianjun Liu, Sichuan University, Chengdu, Sichuan, China.
Xiaoping Yuan, Fudan University, Shanghai, China.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.